Available online at www.sciencedirect.com

e o . CEMPUGErs
*»” ScienceDirect ePErEtiens
. siie FESEEIFEHI
ELSEVIER Computers & Operations Research 35 (2008) 113129

www.elsevier.com/locate/cor

The valuation of multidimensional American real options using
the LSM simulation method

Gonzalo Cortazar*, Miguel Gravet, Jorge Urzua

Departamento de Ingenieria Industrial y de Sistemas, Escuela de Ingenieria, Pontificia Universidad Catdlica de Chile,
Vicuiia Mackenna 4860, Santiago, Chile

Available online 22 March 2006

Abstract

In this paper we show how a multidimensional American real option may be solved using the LSM simulation method originally
proposed by Longstaff and Schwartz [2001, The Review of the Financial Studies 14(1): 113—-147] for valuing a financial option
and how this method can be used in a complex setting. We extend a well-known natural resource real option model, initially solved
using finite difference methods, to include a more realistic three-factor stochastic process for commodity prices, more in line with
current research. Numerical results show that the procedure may be successfully used for multidimensional models, expanding the
applicability of the real options approach.

Even though there has been an increasing literature on the benefits of using the contingent claim approach to value real assets,
limitations on solving procedures and computing power have often forced academics and practitioners to simplify these real option
models to a level in which they loose relevance for real-world decision making. Real option models present a higher challenge than
their financial option counterparts because of two main reasons: First, many real options have a longer maturity which makes risk
modeling critical and may force considering many risk factors, as opposed to the classic Black and Scholes approach with only one
risk factor. Second, real investments many times exhibit a more complex set of interacting American options, which make them
more difficult to value. In recent years new approaches for solving American options have been proposed which, coupled with an
increasing availability of computing power, have been successfully applied to solving long-term financial options. In this paper we
explore the applicability of one the most promising of these new methods in a multidimensional real option setting.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Even though in the last two decades there has been an increasing literature on the benefits of using the contingent
claim approach to value real assets, limitations on solving procedures and computing power have often forced aca-
demics and practitioners to simplify these real option models to a level in which they loose relevance for real-world
decision making.

There are two main reasons why real option models may present a higher challenge than their financial option
counterparts to be solved. First, many real options have a longer maturity which makes risk modeling critical and may
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force the use of several risk factors, as opposed to only one, like in the classic Black and Scholes [1] stock-option
model. Second, often real investments exhibit a more complex set of nested and interacting American options, which
make them more difficult to value.

In the valuation of natural resource investments, for example, until only a few years ago most commodity price
models considered only one risk factor and constant risk-adjusted returns. These earlier models have several undesirable
implications, including that all futures returns should be perfectly correlated and exhibit the same volatility, which is
not in line with empirical evidence. In recent years, however, many multifactor models of commodity prices have
been proposed being much more successful than previous one-factor models in capturing the observed behavior of
commodity prices like mean-reversion and a declining volatility term-structure [2,5-7].

On the other hand, the real options literature has also evolved and models increasingly take into account the different
types of flexibilities available to decision makers when managing their projects. These flexibilities include the options to
abandon a project, to shut down production, to delay investments, to expand capacity, to reduce costs through learning,
among many others [8—11].

The introduction of multifactor price models into these real option models with many interacting flexibilities increases
the difficulty of solving them, making traditional numerical approaches, like the finite difference methods, clearly
inadequate. There has been, however, new research on using some sort of computer-based simulation procedures for
solving American options, which coupled with an increasing availability of computing power, has been successfully
applied to solving multifactor financial options. [12—18]. One of the most promising new approaches in this literature is
the LSM method proposed by Longstaff and Schwartz [19] which has been tested for some financial options of limited
complexity [20-22].

In this paper we explore the applicability of the LSM method in a multidimensional real option setting. We extend
the Brennan and Schwartz [23] one-factor model for valuing a copper mine initially solved using finite difference
methods, to include a more realistic three-factor stochastic process for commodity prices, more in line with current
research. We implement the LSM method and discuss how complexity may be reduced. Numerical results show that
the procedure may be successfully used for multidimensional models, notably expanding the applicability of the real
options approach.

The remainder of this paper is organized as follows. Section 2 presents the problem to be solved. It describes the
classic Brennan and Schwartz [23] real option model of a natural resource investment and how we extend it to include
a multifactor model of commodity prices. A brief explanation on the real options approach for valuing investments is
also included. Section 3 presents the proposed computer-based simulation procedure. Section 4 discusses the results
of the numerical solution to the original and to the extended Brennan and Schwartz model and some implementation
issues for high-dimensional models. Finally, Section 5 concludes.

2. The problem
2.1. The Real options approach to valuation

Real option valuation (ROV), can be understood as an adaptation of the theory of financial options to the valuation
of investment projects. ROV recognizes that the business environment is dynamic and uncertain, and that value can be
created by identifying and exercising managerial flexibility.

Options are contingent claims on the realization of a stochastic event, with ROV taking a “multi-path” view of the
economy. Given the level of uncertainty, the optimal decision-path cannot be chosen at the outset. Instead, decisions must
be made sequentially, hopefully with initial steps taken in the right direction, actively seeking learning opportunities,
and being prepared to appropriately switch paths as events evolve.

ROV presents several improvements over traditional discount cash flow (DCF) techniques. First it includes a better
assessment of the value of strategic investments and a better way of communicating the rationale behind that value.
In most traditional DCF valuations, a base value is calculated. Then, this base value is “adjusted” heuristically to
capture a variety of critical phenomena. Ultimately, the total estimated value may be dominated by the “adjustment”
rather than the “base value.” With ROV, the entire value of the investment is rigorously captured. Conceptually, this
includes the “base value” and the “option premium” obtained from actively managing the investment and appropriately
exercising options.
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Second, ROV provides an explicit roadmap or “optimal policy” for achieving the maximum value from a strategic
investment. Most traditional investment valuations boil down to a number, and perhaps a set of assumptions underlying
that number. However, the management actions required over time to realize that value are not clearly identified. With
ROV, the value estimate is obtained specifically by considering these management actions. As a result, ROV indicates
precisely which events are important and the necessary actions required to achieve maximum value.

There is a broad literature on ROV and how to maximize contingent claim value over all available decision strategies.
Among them, Majd and Pindyck [24] include the effect of the learning curve by considering that accumulated production
reduces unit costs, Trigeorgis [25] combines real options and their interactions with financial flexibility, McDonald
and Siegel [26] and Majd and Pindyck [27] optimize the investment rate, and He and Pindyck [28] and Cortazar and
Schwartz [29] consider two optimal control variables.

The ROV approach has been used to analyze uncertainty on many underlying assets, including exchange rates [30],
costs [31] and commodities [32]. Real asset models have included natural resource investments, environmental, new
technology adoption, and strategic options, among others [32-35].

Recently real options analysis is gradually advancing into the domain of strategic management and economic
organization. Bernardo and Chowdry [11] analyze the way in which the organization learns from its investment projects.
A related model is presented in [36]. They study the choice between a small and a large project, where choosing the small
project allows one to re-invest later in the large project. Lambrecht and Perraudin [37] introduce incomplete information
and preemption into an equilibrium model of firms facing real investment decisions. Miltersen and Schwartz [38] develop
a model to analyze patent-protected R&D investment projects when there is imperfect competition in the development
and marketing of the resulting product. Finally, Murto et al. [39] present a modeling framework for the analysis of
investments in an oligopolic market for a homogenous commodity.

In this paper, we extend and solve the well-known Brennan and Schwartz [23] model for valuing natural resource
investments. Other papers on natural resource investments include [40—45], among many others.

2.2. The Brennan and Schwartz [23] Model

The valuation of a copper mine in [23] laid the foundations for applying option pricing arbitrage arguments to the
valuation of natural resource investments. In the model the value-maximizing policy under stochastic output prices
considers the optimal timing of path-dependent, American-style options to initiate, temporarily cease or completely
abandon production. We now describe the optimization problem in a general framework for valuing a switching option.

Consider the Brennan and Schwartz [23] model as a switching option with value V;(x, j) and cash flows CF; (X, j)
at time ¢, which depend on a vector of N state variables, x = (xl, o xN ) and the state of production j. The model
considers that there are K states of production and the switching option can move from one state, j, to another, i, paying
the corresponding switching cost, C ,] ! (x). This state switches can be made at any of T + 1 stages, witht =tg, 1, .. ., IT.

We assume, for simplicity that the process for the state variables can be risk-adjusted and that markets are complete.
Thus we can use the standard option pricing technique, which means that the switching option can be valued as the
discounted expectation under the risk-neutral probability measure. At maturity, we assume the switching option has no
value, thus:

Vrx, j)=0; j=1,....K. (1)

The switching option can then be solved recursively as follows. Moving backwards in time, in = T — At the value
of the option is maximized among all feasible future stages:

Vr_al(X, j) =maxi=i, ., K{CFT_At(x,w—C;"_A,(x)}; j=1.....K. )

At times t = tg, t1, . . ., t7_pA, the value of the option can be computed as a function of current cash flows and the
conditional expectation of the value in the following period. For example in t7_,a;:

ji=1,....K, 3)
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where r is the risk free rate between time f7_,; and t7_a;. E7_», [.] represents the conditional expectation at time
tr_oa; under the risk neutral probability measure. Consequently, the initial value of the switching option Vj(x, j*) can
be solved by this backward recursion where j* represents the initial state.!

To determine the critical vector of state variables x€ that triggers the transition between different states of production,
we must find the values that equate the conditional expectations between states of production.

In the original Brennan and Schwartz [23] the project is a contingent claim on copper price which follows a one-factor
model, thus:

ds;
— = udr + gdz, (@)
S
in which p is the instantaneous price return, o is the return volatility and dz is an increment to a standard Gauss—Wiener
process.

Commodity holders are assumed to receive, in addition to the price return, a convenience yield which does not
accrue to the holder of a financial instrument contingent on copper, i.e. a futures contract. This convenience yield, C,
is assumed to be proportional to the spot price, thus the risk-adjusted process for commodity prices may be written as:

%:(r—c)dt—i—adz 5)
S
with r being the risk-free interest rate.

The initial amount of copper reserves is Qmax, and the mine produces at a constant rate of g, so there are R feasible

states of reserves, where

R — Qmax )
qAt

Also the mine may be open, closed or abandoned, so there are 3 R states of production. The cost of switching between
states depends on K1, K> and M, with K being the cost of closing an open mine, K> being the cost of opening a
closed mine, and M the annual cost of maintaining a closed mine. The mine is abandoned at no cost when market value
reaches zero. The unit cost of production is A, thus the cash-flow, when the mine is open, is

CE(S) =q(S —A) -1,

where 7 includes annual income and royalty tax payments. In addition there is an annual property tax amounting to
a fraction 41 or 4o of market value, depending on whether the mine is open or closed. When closed, the mine has no
earnings, but incurs in a maintenance annual cost of M.

2.3. Extending the Brennan and Schwartz [23] Model

Initial applications of the real options approach were made in the natural resource sector mainly because of its high
irreversible investments and the well developed commodity futures markets. Even though real option models, like the
one we just described, have been successful in capturing many managerial flexibilities, in general they have considered
very simple specifications of the price risk process, hindering the use of this approach in real-world applications.

This simple risk specification represented the state-of-the art in commodity price modeling when this approach was
developed more than two decades ago. Since then much research has been done to capture in a better way the commodity
price stochastic process, but real option models have not kept pace with this research, probably in part due to the added
complexity to obtain numerical solutions in a multi-factor setting.

In this section we extend the Brennan and Schwartz [23] model to include a multifactor specification for uncertainty,
model which in later sections will be solved numerically.

Commodity price processes differ on how convenience yield is modeled and on the number of factors used to describe
uncertainty. Early models, i.e., Brennan and Schwartz [23], assumed a constant convenience yield and a one-factor
Brownian motion. Later on, mean reversion in spot prices began to be included as a response to evidence that futures

!'Later in the paper we add to this notation the subscript w to indicate a simulated path.
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return volatility declines with maturity. One-factor mean reverting models can be found, for example, in [46-48]. With
one-factor models, however, all futures returns are assumed to be perfectly correlated which is not consistent with
empirical evidence.

To account for a more realistic price behavior, two-factor models, with mean reversion, were introduced. Examples
are [2-4]. Later, Cortazar and Schwartz [7] proposed a three-factor model for commodity prices and estimated it using
oil futures, showing that the model exhibits low estimation errors.

In this paper we calibrate the Cortazar and Schwartz [7]> three-factor model with copper futures and use it as an
extension of the Brennan and Schwartz [23] model of a copper mine.

The model has three state variables, the commodity spot price, S;, the demeaned convenience yield, y;, and the
expected long-term spot price return, v,. Commodity spot prices follow a geometric Brownian motion. Spot price
returns have an instantaneous drift equal to the expected long-term return, v,, minus short-term deviations from the
convenience yield, y;. Both y; and v; are mean reverting, the first one to zero and the second one to a long-term
average, V.

The authors show that the three factors allow for an increased flexibility of the model which makes it able to match
both the shape of the futures price curves and also the volatility term structure, two key attributes for price model
selection.

The dynamics of the state variables are:

ds;

— = —y)dt +o1dzy, (6)

Sy

dy, = —xy, dt + 02 dz2, (N

dvi =a(v — v;)dt + 03dz3, (8)
with

dzidzp = ppdt, dzidzz =p3df, dzpdzz = py3dr. 9)

Defining /; as the risk premium for each of the three risk factors, the risk-adjusted processes are:

ds,
S—f = (v — yi — A1) dr + a1 dz, (10)
t
dy, = (=xy; — A2)dt + 02 dZ; (11)
dv, = (a(v — v;) — J3) dt + o3 dz3, (12)
with
(dzh)(dzd) = ppde,  (dz3)(dzh) = pas dr,  (dz})(dz%) = pyzdr. (13)

Following the same estimation procedure used in Cortazar and Schwartz [7] for oil prices, we calibrate this model
for copper using all futures traded between 1991 and 1998 at NYMEX, obtaining the parameter values shown
in Table 1.

The model allows for all three state variables to be correlated, providing a greater flexibility which is in line with
empirical evidence. It is interesting to note that most parameter values, including the factor correlations, exhibit a sign
and magnitude similar to those reported in [7] for oil. Also, the model fits the empirical data with a mean absolute error
of 0.2% and exhibits similar theoretical and empirical volatilities, as shown in Fig. 1.

Using this three-factor price model to extend the Brennan and Schwartz [23] real option model we obtain a much
better model specification. With this new price process, and following the general framework described in the previous
section, we have that the switching option now depends on three state variables.

2 Cortazar and Schwartz [7] is an extension of the Schwartz [3] model for commodity prices, and shares some of its good properties like mean
reversion while ensuring positive prices. Other commodity price models could have been used, including square-root processes, stationary models
or general affine models [49].
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Table 1
Parameter values of the Cortazar and Schwartz [7] three-factor commodity price model calibrated using all copper futures traded between 1991 and
1998 at NYMEX

Parameters Value

A —0.032
A —0.392
A3 —0.193
a 1.379
K 2.850
v —0.007
a1 0.257
[ 0.906
g3 0.498
P12 0.215
023 0.841
P13 —0.229

30%
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Fig. 1. Empirical and theoretical volatility term structure using the Cortazar and Schwartz [7] three-factor commodity price model calibrated using
all copper futures traded between 1991 and 1998 at NYMEX.

Even though this model may be solved with traditional finite difference methods, is solved much more efficiently
using the simulation method shown in the following sections.

3. Implementation
3.1. An introduction to the LSM method

We propose solving multidimensional problems, like the extended Brennan and Schwartz model, using the LSM
method. To illustrate the LSM method proposed in Longstaff and Schwartz [19], we consider throughout this section a
very simple copper mine that may extract all available resources instantaneously at any moment during the concession
period. Also copper prices are considered in this section to follow a one-factor model. In the next section we will show
how to implement the extended Brennan and Schwartz three-factor model.

Consider a simplified copper mine in which all reserves, O, may be instantaneously extracted at any point in time
incurring in a unit production cost of A. The copper spot-price, S;, is assumed to follow a one-factor geometric
Brownian motion:

ds;

— =0 —c)dt+o0dz (14)
S

with r the risk-free interest rate and ¢ the convenience yield.
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The method starts by simulating a discretization of Eq. (14):
Si =14+ —c)At] S;—1 + Si—10V Atg (15)

with Az the time interval in years and ¢, a random variable with a standard normal distribution.

Then, Eq. (15) is simulated through time, obtaining a price-path w. The process is repeated N times, and a price
matrix S, with N price paths over a time horizon 7, is obtained.

Like in any American option valuation procedure, the optimal exercise decision at any point in time is obtained
as the maximum between the immediate exercise value and the expected continuation value. Given that the expected
continuation value depends on future outcomes, the procedure must work its way backwards, starting from the end of
the time horizon, 7.

Starting with the last price in each path, w, given that at expiration the expected continuation value is zero, the option
value in T for the price path @ can be computed as

C(S7(w)) =Max(Q(Sr(w) — A); 0). 16)

One time-step backward, at t = T — At, the process is repeated for each price path, but now expected continuation
value must be computed. It is important to notice that at this last time-step the expected continuation value may be
computed using the analytic expression for a European option.

The main contribution of the LSM method is to compute the expected continuation value for all previous time-steps
by regressing the discounted future option values on a linear combination of functional forms of current state variables.
Given that the way these functional forms are chosen is not straightforward, in most of the paper we use simple powers
of all state variables (monomials) and their cross products which is the most common implementation of the method
found in the literature. In the last section of the paper we revisit this decision and provide alternative functional forms,
which in our tests have shown to be computationally efficient in multidimensional settings.

In particular, let L/, with j =1, 2, ... M, be the basis of functional forms of the state variable S;_,(®) used as
regressors to explain the realized present value in trajectory o, then the least square regression is equivalent to solving
the following optimization problem:

2
N M
hgai}nw; C(Sr(w))e’A‘—;am(sr_m(w)) : (17)

The optimal coefficients a are then used to estimate the expected continuation value G(ST_ Ar(@)):

M

G(Sr—a(@) =) al L (Sp_p (). (18)
j=1

Fig. 2 shows discounted continuation values of our simple copper mine for all N simulated paths and the expected
continuation function computed as the solution to the regression of these values on powers of the spot copper price.

Then, the optimal decision for each price path is to choose the maximum between two values: the immediate exercise
and the expected continuation value.

Once we have worked ourselves backwards until # = 0, we have a final vector of continuation values for each price-
path, which averaged provides us with an estimation of its expected value, which in turn, when compared with the
immediate exercise value gives the option value at time ¢t = 0:

Option value = Max[Q(So — A); G(So)]. (19)
3.2. Implementing the extended Brennan and Schwartz model

In this section we show how to implement the LSM approach to solve the Brennan and Schwartz [23] model for any
price process, including the options to abandon a mine, to close an open mine and to open a closed mine.

Fig. 3 may be useful to understand the nature of the problem by describing all possible states during the simulation. It
can be seen that as time evolves from 0 to T, the state variables that describe the three-factor dynamics for copper price,
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Continuatiion Value
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Fig. 2. Implementation of the LSM in the simple copper mine: discounted continuation values for all N simulated paths and expected continuation
function computed from a regression on powers of the spot copper price.
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Fig. 3. State-space representation of the Brennan and Schwartz [23] model.

x(w) = [S(w), y(w), v(w)], evolve following different paths. At any point in time, and for any value of the three state
variables, the mine may have any amount of copper reserves between zero and the initial reserves Qmax. In addition,
the mine at that point may be open or closed with market values V;(x(w), Q) or W;(x(w), Q),3 respectively.

For each state of the system and for each operating policy, there is an associated cash flow for the mine. For example,
when the mine is open and the operating policy is to remain open during At years producing g, the cash flow, CF, is

CF(S, q) = qAt(S — A) — 1. (20)

Recall that for any price model, the spot price depends on the state variables x, i.e. § = f(x). In particular, for the
three-factor Cortazar and Schwartz [7] model used in this paper, we have:

S=f(x)=h'x with h'=[1 0 0]. 2n

Also, as noted previously, the mine may be open, closed or abandoned, and may switch from one operating state to
another incurring in fixed costs.

Fig. 4 summarizes the cash flows of an open mine which will either remain open, be closed or abandoned during
time ¢. Fig. 5 shows the same information, but for a closed mine.

3 In Section 2.2 the status of the mine (open or closed) was indicated using the variable j.
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Open Mine

Operating Policy Cash Flow at t Value at t+At

Continue Open | CF(S(®), q) |V, 5, X(0),0 - qAr)

V, (x(w),0) ——» Close K- M At W,a X(@),0)

Abandon 0 Viear = Wipr=0

Fig. 4. Cash flows and value of an open mine as a function of the operating policy.

Closed Mine
Operating Policy Cash Flow at t Value at t+At
Open CFS(@), ) = Ky | Vipp X(@),Q = gA1)
W, (x(),Q) —» Continue Closed —M At W, n (X(0),0)
Abandon 0 Viear = Wia=0

Fig. 5. Cash flows and value of a closed mine as a function of the operating policy.

As described earlier, after simulating all price paths from time zero to time 7, the method requires making optimal
decisions starting at time 7 and then working backwards until time zero is reached. The optimal decision at each point
is taken by maximizing market value among all available alternatives.

At time 7, given that the concession ends, the value of both the open and the closed mine is zero:

Vrx(w), Q) = Wr(x(w), @) =0 VO, Vo. (22)

Then, at t = T — At there is no time left to change the operating policy so there is no need to estimate an expected
continuation value. So the market values are:

Vr—a(X(@), Q) = Max(CF(S7_a (@), ¢); 0) VO, (23)
Wr_a (X(@), Q) = Max(CF(S7_p (0), ) — K2;0)  VO. (24)

Then, at t = T — 2Ar we must estimate the expected continuation value. We regress the discounted mine value on a
linear combination of functional forms of the state variables L(X), for each inventory level Q:

Vr_a X, Q™A Wy (X, Qe CHOM = Ly o), X)lay. g.7-anilaw. 0.7 —2a] + €. (25)

Once the optimal coefficients are found we can estimate the expected continuation values at t = 7' — 2At:

(Gv,0.7-24¢/Gw, 0, 7—2ai] = Lr_on: X)[ay o, 7—2acldw, 0, 7—2A¢]- (26)
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Table 2
Expected and realized value of an open mine as a function of the operating policy

Expected value Optimal decision Realized value

CF(S;(®), q) + Gy, g—gar 1 (X(®)) Continue open V,(x(w), Q) = CF(S;(®), q) + Vigar (X(w), Q — gAr)e= M
—Ki — MAr + GW_Q,,(x(w)) Close Vi(x(w), Q) = =K1 — MAt + Wiy (x(w), Q)e (i)l

0 Abandon Vix(w), Q) =0

Table 3

Expected and realized value of a closed mine as a function of the operating policy

Expected value Optimal decision Realized value

—K2 + CF($1(), ¢) + Gy.0—qars(X(@))  Open Wi (x(®), Q) = —K3 + CF(S;(0). @) + Viar (X(@), Q — gAne™ DA
—MAt + Gw, g, (x()) Continue closed W, (x(@), Q) = —MAt + Wi a, (x(@), Q)e~CH0)A

0 Abandon W (x(w), Q) =0

Table 4

Open mine values as a function of the initial operation decision

Continue open Vo(x, Q) = CF(So, q) + év.Q—qu,r:o(X)
Close Vo(x, Q) = —Ki — MAt + Gw, ¢ 1=0(X)
Abandon Vo(x,0)=0

Thus, the expected continuation value at time t = T' — 2At, as a function of the price state vector x, may be computed.
For example, the value of an open mine with Q units of resources, conditional on the state vector x, would be

M
Gv.o.r-2n () = Z&(/,Q,T—zAtLJT—ZAt ). 27)
j=1

Given that we can compute the expected continuation value, we are now able to obtain the optimal operating decisions
by maximizing current cash flows plus the present value of expected continuation values. For example, when the mine
is open there are three available operating alternatives: to continue open, to close down operations, or to abandon the
mine. Adding current cash flows to discounted expected continuation values for each of the three alternatives, the
decision maker may choose the best course of action.

Table 2 shows, for each of the three alternatives, the expected present value (at time ), the optimal decision should this
expected present value be the maximum among the alternatives, and the final value at time ¢ using actual realizations
of the price simulation (instead of expected values to avoid biases due to the Jensen’s inequality) at time ¢ + 1.
Table 3 shows the same information, but when the mine is initially closed.

This procedure is repeated from t = T — 2Ar until t = Az. At t = Ar mine values are averaged over all price paths
to provide an initial estimate of the expected continuation value for the mine:

~ 1 N o
GV,Q—th,t:()(X) = ; Z Vas (x(w), O — gAt)e (r +).])At, o8
w=1
1S _
GW-,Q,T:O(X) = ; Z WAt(X(w), Q)e—("-i-/u())At' (29)
w=1

Tables 4 and 5 show the initial mine values depending on the initial status and operating policy of the mine.
Finally, to determine the optimal operating policy the method must find the critical state variables, x“, which equate
expected present values for different operating decisions.
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Table 5
Closed mine values as a function of the initial operation decision

Open Wo(x, Q) = —K2 + CF (S0, 9) + Gv,0-ga1.i=0 (%)

Continue closed Wo(x, Q) = —MAr + Gw,0.1=0(X)

Abandon Wo(x, Q) =0

Table 6

Conditions to determine critical state variables x° for switching mine operation

Open to Closed CF(x%, q) + CV.Q,(]A[,,(XC) =—K; — MAt + (A}W,Q,(x”)
Closed to Open —MAr + éw_Q,,(x") =—K,+ CF(x°, q) + (A?V,Q_[,A,‘,(x")
Open to Abandon CF(x‘, q) + (A;V,Q_qm,, (x)=0

Closed to Abandon —MAr + Gy 0, (x) =0

Table 7

Restrictions on initial state variables and parameters of the Cortazar and Schwartz [7] model to induce a one-factor price process similar to the
Brennan and Schwartz [23] model

Cortazar—Schwartz model Brennan—Schwartz model
Yo Aa/Kc

0] v—J3/a

21 Vo — yo — (r —¢)
o ~

23 ~0

a 1

K 1

v ~0

[} a

g2 ~ 0

g3 ~0

P12 ~0

P23 ~0

P13 ~0

Table 6 shows how to find the critical state variables to close an open mine, to open a closed mine, or to abandon
from an open or from a closed mine.

4. Results

4.1. Results for the one-factor Brennan and Schwartz [23] model

In this section we validate our proposed approach by applying it to the one-factor Brennan and Schwartz [23] real
options model and comparing the results to those originally reported using traditional finite difference methods.

A simple way of validating our approach is to see the one-factor price process as a particular case of the more general
three-factor process. In this way by restricting some parameter values we can perform a better test on the algorithm by
using the same computer program to solve both models.

Table 7 shows how the Cortazar and Schwartz [7] three factor model may be restricted to behave as the one-factor
model used in Brennan and Schwartz [23]:

The simulation program computed 50000 price paths, assuming a maximum extraction time of 50 years with
three opportunities per year to switch between operating states. This is an approximation to the continuous-time
Brennan and Schwartz model which assumes an infinite concession time and infinite opportunities per year to switch
operating states.
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Table 8
Open and closed mine value as a function of spot price

Spot price (US$Ib.) Mine value finite Mine value
difference method reported in [23] Simulation method
Open Closed Open Closed
0.4 4.15 4.35 4.2 44
0.5 7.95 8.11 7.93 8.12
0.6 12.52 12.49 12.51 12.49
0.7 17.56 17.38 17.51 17.31
0.8 22.88 22.68 22.8 22.6
0.9 28.38 28.18 28.29 28.09
1.0 34.01 33.81 33.89 33.69
0.90
0.80 -
<
0.70 -
2 060 -
2
o 0.50 4
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Fig. 6. Critical prices for opening, closing or abandoning a mine, as a function of reserve level obtained using the LSM method.

Table 8 compares the finite difference values reported in [23] with those obtained using the above simulation
procedure. The mine and market parameters used are those reported in [23]. It can be seen that the simulation method
converges to the known finite difference solution.

Our simulation procedure may also provide the optimal operating policy. Fig. 6 shows the critical prices for aban-
doning, opening a closed mine, and closing an open mine, as a function of reserves. Results are very similar to those
reported in [23].

4.2. Results for the three-factor extension of the Brennan and Schwartz [23] model

We now report the solution to the Brennan and Schwartz [23] model extended to include the Cortazar and Schwartz
[7] three-factor commodity price model. The parameter values used are those reported in Table 1.

We now assume a 30 year concession horizon, and three opportunities to switch operation states per year. To value
the mine for a particular date, say April the 14th, 1999, we must first determine the values of the state variables S,, y,,
v, corresponding to that date, which are 0.64, 0.198 and 0.244, respectively. Following the implementation procedure
described in Section 4.1 we obtain a value for the open mine of MMUS$ 15.64, and for the closed mine of MMUS$
15.52.

To explore how mine value changes according to variations in price conditions, we solve for the value of the mine
for a 5 year time span. Results are reported in Fig. 7.

It is interesting to note that mine value exhibits mean reversion. Even though it is well known that copper prices do
exhibit mean reversion, which is captured in the three-factor model, given that a mine produces copper during a long
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Fig. 7. Monthly values of the extended Brennan and Schwartz [23] open mine according to historical copper pricing conditions from January
1999-December 2003.

MM US$

-15 T T T
0.4 0.5 0.6 0.7 0.8
Spot Copper Price (USS$)
—— NPV —@— Open Mine ROV Closed Mine ROV

Fig. 8. Value of the open mine using ROV and NPV as a function of spot price for y = 0.01 and v = —0.1.

time horizon it could be thought that current spot prices would not have a great effect on mine values. Fig. 7 shows this
is not the case.

Doing comparative static analysis on how mine value changes with variations in the spot price or in any individual
state variable or parameter value is rather straightforward. For example, Fig. 8 shows how mine value increases with
copper spot prices. It is also interesting to note how mine values are convex, because as mine value approaches zero
the probability of abandoning the mine increases. Finally, the same figure compares mine value computed with the
real option model to a simple net present value calculation which does not recognize operating flexibilities to abandon
or close operations. It can be seen that when spot prices are lower, option values are greater and these two valuation
methodologies diverge the most. By the same token, when prices are high, flexibilities are not too valuable and both
valuations converge.

Comparative static analysis for the value or for the optimal policy can easily be performed for any of the state
variables, strengthening the ability of the LSM method to study the behavior of an investment project for different
scenarios.

4.3. An alternative implementation for multi-dimensional settings

In the previous sections we have shown a simple implementation of the LSM approach for solving a real options
model with a three-factor price process. As stated previously, one of the main contributions of this approach is the
computation of the expected continuation value by regressing discounted future option values on a linear combination
of functional forms of current state variables. The way these functional forms are chosen is not straightforward and, as
is discussed in this section, it may become an important issue in high-dimensional settings.
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Fig. 9. RMSE as a function of the number of regressors for Chebyshev Polynomials and for the reduced-base form using only futures.

Longstaff and Schwartz [19] propose for multidimensional implementations of their method the use of basic functions
from Laguerre, Chebyshev, Gegenbauer, Jacobi polynomials, or, the simple powers and cross products of the state
variables used in this paper. For example, if the state variables were only two, X and Y, a simple order-two expected
continuation value function would have six regressors, namely:

GX,Y)=do+a1X + @Y + a3 XY + anX? + asY>. (30)

Although this procedure for specifying the regression basis has the benefit of being simple and theoretically con-
vergent [22,52,53], in high-dimensional settings it may induce numerical problems due to the least squares regression
instability [21] and performance problems due to the high number of regressors.

An alternative to the described procedure for specifying the base that we have tested is to take advantage of the
structure of the problem to be solved. Thus, given that optimal exercise of options depends on expected spot prices and
volatilities, instead of using as regressors powers of all state variables, it could be better to use functions on futures,
European options or bond prices, which have economic meaning.

Recent independent work has shown the potential of this approach for implementing multidimensional financial
derivatives. For example Andersen and Broadie [50] include as regressors European call options and their powers for
valuing a multi-stock option and Longstaff [51] value the prepayment option on a term structure string model with 120
state variables using closed form par-price bonds and their powers. We are not aware, however, of any use of a similar
approach in the real options literature.

Thus our alternative implementation, in its simplest specification, boils down to computing the expected continuation
value function:

N
GNo) =do+ ) a4 E(S), (31)

i=1

where E(S) is the expected spot price under the risk-adjusted measure, i.e., the future price.

Our tests show that using this reduced-base specification we can obtain similar valuation accuracy in a simpler way
than using polynomials of state variables. For example, we solved a three-factor European option with known analytic
solution with two alternative implementations of the LSM approach: Chebyshev functions and futures prices. Fig. 9
computes the RMSE as a function of the number of regressors, showing that using futures requires less regressors for
any giver error level.

Using less regressors for estimating the continuation function has many computational benefits including reducing
CPU-processing time which could be critical for high-dimensional implementations.

For example we performed another test solving the extended three-factor price model Brennan and Schwartz mine,
obtaining valuations within 1% for both LSM implementations, while calculation time increased with the number of
regressors, as shown in Fig. 10. These results suggest that if calculation time is an issue it is worth exploring alternative
implementations of the LSM approach.
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Fig. 10. Relative computer calculation time for solving the extended Brennan and Schwartz mine model as a function of the number of regressors
when using the standard and the reduced base implementation of the LSM method.

5. Conclusions

Real options valuation (ROV) is an emerging paradigm that provides helpful insights for both valuing and managing
real assets. It provides more precise quantifications on the value of available strategic and operational flexibilities than
traditional discounted cash flow techniques.

Despite its potential, the ROV approach has not yet made a strong inroad in corporate decision-making due to several
reasons, one of which is the requirement to keep models too simple to obtain solutions within a reasonable amount of
effort.

In this paper we show how it is possible to solve complex multidimensional American options using computer-based
simulation procedures. The implementation is validated using the one-factor Brennan and Schwartz [23] model with
the reported finite difference solution.

We then extend the Brennan and Schwartz [23] to include a three-factor price model and solve it using the proposed
methodology. Comparative static analyses are provided.

This paper argues that these new simulation methods have the potential of expanding significantly the use of the
ROV approach without having to compromise rigorous modeling in order to obtain a solution.
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