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There is an extensive literature on modeling the stochastic process of commodity futures. It has been

shown that models with several risk factors are able to adequately fit both the level and the volatility

structure of observed transactions with reasonable low errors.

One of the characteristics of commodity futures markets is the relatively short term maturity of

their contracts, typically ranging for only a few years. This poses a problem for valuing long term

investments that require extrapolating the observed term structure. There has been little work on how

to effectively do this extrapolation and in measuring its errors. Cortazar et al. (2008b) propose a

multicommodity model that jointly estimates two commodities, one with much longer maturity

futures contracts than the other, showing that futures prices of one commodity may be useful

information for estimating the stochastic process of another. They implement the procedure using

highly correlated commodities like WTI and Brent.

In this paper we analyze using prices of long term oil futures contracts to help estimate long term

copper and silver future prices. We start by analyzing the performance of the Cortazar et al. (2008b)

multicommodity model, now applied to oil-copper and oil-silver which have much lower correlation

than the WTI–Brent contracts. We show that for these commodities with lower correlation the

multicommodity model seems not to be effective. We then propose a modified multicommodity model

with a much simpler structure which is easier to estimate and that uses the non-stationary long term

process of oil to help estimate long term copper and silver futures prices, achieving a much better fit

than using available individual or multicommodity models.

& 2010 Elsevier Ltd. All rights reserved.
Introduction

Natural resource investments are very difficult to value. They
usually require large irreversible investments which generate
commodity contingent revenues for a long time span that may
range for over a decade. To value these investments using the
traditional DCF methodology, long term commodity price predic-
tions must be made together with estimates of the risky discount
rates.

Commodity prices are extremely volatile. Table 1 presents the
volatility of the annualized daily returns of the spot prices of
several commodities, showing why forecasting long term prices is
such a difficult task. Table 1 also shows how commodity returns
are correlated, which, as discussed later, may be helpful to
estimate commodity price processes.

Another difficulty for valuing natural resource investments
arises because of the many operational and investment
ll rights reserved.
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flexibilities available to managers who may optimally react to
the very different scenarios that these volatile commodity
markets induce. Traditional DCF methods tend to ignore flex-
ibilities, undervaluing these investments.

To deal with these problems, there has been an extensive
literature which recommends the use of real options theory and
no arbitrage arguments for valuing real assets as contingent
claims. This approach values an asset as the expected cash flows
under a risk-neutral or equivalent martingale measure, and
discounts the flows using the risk free rate. By using this approach
there is no need to compute risk premiums or expected prices, but
only their risk-adjusted estimates. This is particularly convenient
for valuing commodity contingent claims when there is a futures
market. The price of a futures contract represents the risk
adjusted expected commodity price, making price predictions
unnecessary.

Currently there is an active futures market for many
commodities. Table 2 presents the maturity of futures contracts
for a few commodities. It can be seen that for some commo-
dities there are market quotes for futures with long maturities
(WTI 9 years) while for others only for very short maturities
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(Copper-Nymex 2 years). The relatively short longest-maturity-
contract of some commodities poses a challenge for valuing long
term cash flows. For these commodities there is the need for
calibrating a futures model to obtain extrapolated prices for
maturities beyond existing contracts. These models are also
required for valuing operational and investment flexibilities that
may be modeled as real options.

As will be discussed in the next section, there are many no
arbitrage models for pricing futures prices which differ in the
number of stochastic factors, process parameters and risk
premium specifications, among others. Some of them do a fairly
good job in adjusting observed data, both in level and volatility.

However, there has been little work on how to effectively
extrapolate prices and measure their errors. Cortazar et al.
(2008b) show that an individual commodity model that closely
adjusts existing market quotes may induce increasing errors as
model prices are extrapolated well beyond the longest market
quote used in the model calibration. To make a better price
extrapolation, they propose a multicommodity model that jointly
estimates two commodity futures contracts, one with much
longer maturity than the other, showing that futures prices of one
commodity may be useful information for estimating the
stochastic process of another which has shorter maturity
contracts. They implement their procedure using highly corre-
lated commodities like WTI and Brent, obtaining a much better
extrapolation.

In this paper we analyze using prices of long term oil futures
contracts to help estimate long term copper and silver futures
prices. We try to take advantage of return correlations among
commodities, as shown in Table 1. We start by analyzing the
performance of the Cortazar et al. (2008b) multicommodity model
now applied to oil-copper and oil-silver, which have much lower
correlation than the WTI–Brent contracts. We show that for these
commodities with lower correlation, the multicommodity model
seems not to be as effective.

We then propose a modified multicommodity model with a
much simpler structure which is easier to estimate and that uses
the non-stationary long term process of oil to help estimate long
term copper and silver futures processes, achieving a much better
fit than using available individual or multicommodity models.
Our model takes advantage of the Schwartz and Smith (2000)
insight that prices move in reaction to two types of shocks. The
first one is short term shocks which are stationary, and are
responsible for transitory deviations from long term equilibrium.
Table 1
Volatility and correlation of commodity daily returns 01-2004 to 09-2009.

Volatility (%) Return correlation

Brent (%) Copper (%) Silver (%)

WTI 42.5 85.4 37.8 30.3

Brent 38.4 29.7 32.5

Copper 37.3 44.9

Silver 37.8

Table 2
Futures contracts for different commodities as of 01-2010 (the copper LME-10.25 year

liquidity).

Commodity Symbol Exchange
WTI CL NYMEX
Brent CB ICE
Copper HG NYMEX
Copper MCU LME
Silver SI NYMEX

2010 2011 2012 2013 2014
The second type of shocks is responsible for long term movements
which have persistent effects and induce a non-stationary price
process. We extend the Schwartz and Smith (2000) insight to
consider that long term trends in several commodities are related
and that there is valuable long term information in one
commodity that may be used for estimating the long term
process of another. Our results seem to validate our assumption.

The paper is structured as follows. Section ‘Futures price
models: an introduction’ presents an introduction to some futures
price models. Section ‘The proposed model’ presents the proposed
model and estimation procedure. Section ‘Empirical results for
Silver, Copper and Brent’ compares the results of using an
Individual commodity model, a Multicommodity model (Cortazar
et al., 2008b), and our proposed Modified Multicommodity model
for extrapolating prices of silver, copper and Brent oil. Finally,
section ‘Conclusions’ concludes.
Futures price models: an introduction

A commodity futures contract allows two counterparts to
commit to a transaction of the underlying commodity at a
previously defined date and price. The Spot price is defined as the
price of the maturing futures contract. It can be shown by
arbitrage arguments that the futures price must equal the
expected spot price under a risk-neutral probability distribution.
Thus the current futures price discounted at the risk free rate
provides a very simple way of valuing a commodity that will be
available in the future.

Even though commodity futures markets are becoming
increasingly complete with contracts written over more under-
lying assets and maturities, the need for modeling the behavior of
futures prices remains, especially for estimating futures prices of
contracts with maturities not traded.

In the last two decades many models have been proposed.
Most of them include some risk factors modeled as Brownian
motions plus a deterministic trend with different specifications.
The simplest of these models considers a geometric Brownian
motion with one risk factor and a constant drift (Brennan and
Schwartz, 1985).

This simple model has two major drawbacks. First, empirical
evidence shows that prices tend to mean revert, which explains
why short term futures are more volatile than long maturity ones.
The second problem is that the model implies that all futures
contracts, regardless of their maturity, are perfectly correlated
which defies empirical evidence. To deal with these issues, the
model is extended in different ways. First, additional factors are
included (Gibson and Schwartz, 1990; Schwartz, 1997; Cortazar
and Naranjo, 2006; Cortazar et al., 2008a). These factors may be
variables like spot price, convenience yield, interest rates, etc. or,
alternatively, may lack any economic interpretation defining a
state-space representation (Duffie and Kan, 1996; Dai and
Singleton, 2000; Duffie et al., 2000; Cortazar et al., 2007).

A second extension comes from relaxing the constant
drift assumption using, for example, an Ornstein–Uhlenbeck
mean reverting specification, seasonality or time varying risk
maturity contract was introduced only at the end of 2008 and has relatively low
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Fig. 1. Risk factor coefficients for different maturities in a silver futures model.
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premiums (Laughton and Jacoby, 1993; Sorensen, 2002; Manoliu
and Tompaidis, 2002; Cortazar and Schwartz, 2003; Casassus and
Collin-Dufresne, 2005).

Finally, different volatility specifications are used. Most of
them consider a constant volatility while recently the unspanned
stochastic volatility (USV) assumption has been introduced (Trolle
and Schwartz, 2007).

We now explain two particular models that are relevant for
our purposes. Schwartz and Smith (2000) propose a two-factor
model, one representing the long-term equilibrium spot price and
the other the short term deviations. Both risk factors explain
current spot prices, St. The first factor (xt), follows a non-
stationary geometric Brownian motion and the second factor
(wt) a mean-reverting stationary stochastic factor, such that

lnSt ¼ xtþwt

The risk-adjusted dynamics of these factors are:

dxt ¼ ðmx�lxÞdtþsx dzx

dwt ¼ ð�kwt�lwÞdtþswdzw

with

ðdzxÞðdzwÞ ¼ rxwdt

and li the risk premiums for each risk factor.
Another relevant model is Cortazar et al. (2008b). The paper

shows that individual-commodity models, even though they may
fit very well existing price observations, sometimes make poor
extrapolations for long maturities. To deal with this issue a
multicommodity model is presented, where the processes for
more than one commodity are jointly modeled. Again one non-
stationary state variable is assumed, while two or more stationary
state variables are added, some of them shared across different
commodities

The paper starts by modeling a single commodity following
Cortazar & Naranjo (2006):

lnSt ¼ 1uxtþmt

dxt ¼ ð�Kxt�lÞdtþSdwt

Then, the model is extended to include m commodities, all of
them sharing p common factors and having kj factors specific to
commodity j such that
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We are now ready to propose our model.
The proposed model

Introduction

The goal of our model is to make better price extrapolations
than those from existing individual and multicommodity models,
while keeping it tractable. We are concerned with explaining long
term, rather than short term, futures prices.

We build on Schwartz and Smith’s (2000) insight that long
term prices are mainly affected by a non-stationary shock process,
while short term prices have transitory deviations from long-term
equilibrium which may be modeled using a stationary process.
Non-stationarity may arise because these are models of nominal
prices subject to inflation. Thus, we should pay particular
attention to the non-stationary risk factor if we are concerned
with long term prices.

Fig. 1 illustrates this idea. We calibrate a three-factor model for
a Silver futures model and set the first factor to have a non-
stationary process, while the other two have mean-reverting
stationary processes. We recall that the price of a futures contract
can be written as

Fðxt ,t,TÞ ¼ eUxt þv

Fig. 1 plots the ui coefficient from the U vector, corresponding
to each of the three factors showing how the relevance of the
stationary factors decreases with maturity.

Fig. 2 looks at the same issue in an alternative way. It shows the
observed futures prices for Brent on January 6, 2006 and plots our
calibrated model using first all risk factors, and then setting the two
stationary factors to zero. It can be seen that the model using only the
stationary factor performs increasingly well, the longer the maturity.

Thus, for effectively extrapolating long term prices we are
mainly concerned with calibrating the process for the non-
stationary risk factor. Our problem is how to do this without
any market information for a commodity. To deal with this
problem we extend Schwartz and Smith (2000) and conjecture
that a significant portion of the trend that explains long term
futures prices are due to some common macroeconomic factors
that affect all commodities. If this is the case, the relevant long
term trend for one commodity may be elicited from the long term
process of another commodity which does trade long-term
futures. Our results in section ‘Empirical results for silver, copper
and Brent’ are consistent with this conjecture.
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The modified multicommodity (MM) model

We now present a general m commodity model. This model
can be seen as a modification of the Cortazar et al. (2008b)
Multicommodity model and will be called the Modified Multi-
commodity (MM) model. Later, 2-commodity versions of this
model will be estimated to extrapolate copper, silver and Brent
futures prices and compare their performance to existing
alternatives.

We start by defining Yi as the logarithm of the spot price of
commodity i, Si:

Yt ¼

Y1
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Yi
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2
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t
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Let Xt be a vector of n state variables, which explains all m

commodity prices, with the first m state variables the non-
stationary risk factors for the m-commodities. We assume that
these non-stationary risk factors are different for each commod-
ity, but share the same process parameters. Also for each of the m-
commodities we assume there are nfi commodity-specific sta-
tionary factors, each with its own independent process. Then
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We then assume a generalized-Vasicek (Vasicek, 1977) risk-
adjusted process with a vector of constant risk premiums l for the
state variables:

dXt ¼ ðm�l�KXtÞdtþsdwt

where dwt is a n�1 vector of correlated Brownian motion
increments such that

ðdwtÞuðdwtÞ ¼Ydt
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Then, it can be easily shown that the price of a futures contract,
at time t, for delivery of the underlying at time T, is

FðSt ,t,TÞ ¼ exp x1ðtÞþ
Xn
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Notice that the logarithm of the future is linear in the state
variables, which is very convenient for estimating the model.
Also that sharing the process parameters does not assume
cointegration between the commodity price series. Cointegration
requires that a linear combination of two series reduces the
order of integration. Instead of assuming cointegration, we make a
much weaker assumption that the process parameters (mean
drifts and volatilities) are related between commodities, but
we do not impose any restriction on the stochastic shocks. In
other words we assume that, provided we do not have long term
prices for a given commodity, it might be better to use the
information on the drift and volatility of other commodities (that
may be partially related to some common macroeconomic
factors), than to extrapolate this drift from short term prices.
We do not assert that a linear combination of these two
commodities is stationary and recognize that probably it is not
because there might be other factors (that could be non-
stationary) that could explain the differing behavior of the prices
of two commodities.

Some extensions to the above model could be easily made.
For example, if we had independent information on the relation-
ship of the long term trends between commodities, m1 could
be replaced by aim1. By the same token, s1 could be replaced
by bis1. Without this information we are assuming aj¼bj¼1. Also
we could include a variable vector of risk premiums:

lx ¼ lþLx
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where L is a matrix that relates the market price of risk to the
state variables, like in Casassus and Collin-Dufresne (2005), and
the model can still be solved.

The estimation of a simple 2-commodity MM model

In this section we show how to formulate and estimate a
simple version of the general model described before, but now
applied to two commodities: one with long maturity contracts
and the other with shorter ones. We are aiming to use the
information of the long-maturity commodity to help estimate
long term futures prices for the other commodity.

Let us assume the model has n¼4 state variables, two for each
commodity. Each commodity is assumed to have a non-stationary
variable and a stationary one. In this setting the logarithm of the
spot price vector, Yt, is related to the vector Xt with the 4 state
variables, as follows:

Y1t

Y2t

" #
¼
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0 1 0 1

" #
Xtð4�1Þ

dxt ¼ ðm�l�KxtÞdtþSdwt

where dwt is a n�1 vector of correlated Brownian motion
increments such that
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To estimate a 2-commodity model Cortazar et al. (2008b)
propose to jointly calibrate all parameters using an incomplete
panel Kalman Filter, showing that, at least for highly correlated
commodities, very good results may be obtained, at the expense
of rather heavy computing requirements. In their model both
commodities share some factors while having others that are
commodity-specific.

Our proposed model, on the other hand, only shares the
parameters of the non-stationary factor process, and we believe
this can be better estimated using only the commodity that
exhibits long maturity contracts. Thus we will dramatically
simplify the model calibration by using a two-stage estimation
process. We first individually estimate the long-maturity-contract
commodity process. Then, in a second step, we individually
estimate the short-maturity-contract commodity restricting the
parameters of its non-stationary factor to be equal to the values
obtained in the first step for the other commodity.
For each of the steps we use the Kalman Filter and maximum
likelihood to obtain state variables and optimal parameter values.
Empirical results for silver, copper and Brent

The data

We use the WTI oil futures contracts to help estimate futures
prices of three commodities: Silver, Copper and Brent. For each
commodity we use daily futures contracts traded at Nymex, LME,
or IPE markets. The contracts are classified into 4 panels for each
commodity, one in-sample and the other three out-of-sample
sets. Fig. 3 illustrates these 4 panels.

The In-Sample panel will be used to estimate model para-
meters and state variables.

The Out-of-Sample-1 panel will be used only to estimate state
variables, but not model parameters.

Finally, the Out-of-Sample-2 and Out-of-Sample-3 panels will
not be used at all to estimate state variables or model parameters,
and will be helpful for measuring the extrapolation performance
of the alternative models.

For Silver we use daily futures contracts from 1 month to 5
years traded at NYMEX. The In-Sample panel considers contracts
with maturities up to 2 years traded from 01-2004 to 12-2007.
The Out-of-Sample-1 set considers contracts with maturities up
to 2 years traded from 01-2008 to 10-2009. The Out-of-Sample-2
data considers contracts with maturities of more than 2 years
traded from 01-2004 to 12-2007. The Out-of-Sample-3 set
considers contracts with maturities of more than 2 years traded
from 01-2008 to 10-2009.

For Copper we use daily futures contracts from 1 month to
10.25 years traded at NYMEX and LME. The In-Sample panel
considers contracts with maturities up to 2 years traded from
01-2004 to 12-2007. The Out-of-Sample-1 data considers contracts
with maturities up to 2 years traded from 01-2008 to 10-2009. The
Out-of-Sample-2 set considers contracts with maturities of more
than 2 years traded from 01-2004 to 12-2007. The Out-of-Sample-3
data considers contracts with maturities of more than 2 years traded
from 01-2008 to 10-2009.

For Brent we use daily futures contracts from 1 month to
7 years traded at IPE. The selection of contracts and dates is the



Table 4
Parameter values and standard deviations for Individual, Multicommodity and

Modified Multicommodity models for copper.

Parameter Individual Multicommodity MM—modified
multicommodity

k2 2.853 (0.225) 0.797 (0.033) 1.659 (0.087)

k3 0.585 (0.031) 0.483 (0.014) 0.386 (0.007)

k4 – 0.306 (0.001) –

k5 – 0.100 (0.000) –

s1 0.363 (0.013) 0.260 (0.000) 0.275 (0.008)

s2 0.199 (0.020) 0.424 (0.007) 0.315 (0.015)

s3 0.410 (0.016) 0.362 (0.007) 0.727 (0.042)

s4 – 0.500 (0.005) –

s5 – 0.287 (0.003) –

r12 �0.227 (0.112) 0.460 (0.062) 0.395 (0.114)

r13 �0.250 (0.020) �0.186 (0.003) �0.484 (0.035)

r14 – �0.500 (0.008) –

r15 – �0.172 (0.003) –

r23 0.099 (0.033) �0.201 (0.016) �0.645 (0.009)

r24 – 0.209 (0.003) –

r25 – �0.404 (0.010) –

r34 – �0.085 (0.001) –

r35 – �0.077 (0.002) –

r45 – �0.448 (0.006) –

l1 0.238 (0.030) 0.149 (0.000) 0.197 (0.001)

l2 0.320 (0.115) 0.363 (0.007) 0.531 (0.147)

l3 0.388 (0.160) 0.271 (0.003) �0.754 (0.219)

l4 – 0.138 (0.002) –

l5 – 0.051 (0.000) –

m 0.057 (0.028) 0.119 (0.000) 0.164 (0.002)

xCL – 0.013 (0.000) –

xHG 0.024 (0.000) 0.011 (0.000) 0.024 (0.000)

d – 0.994 (0.035) –

Table 5
Parameter values and standard deviations for Individual, Multicommodity and

Modified Multicommodity models for Brent.

Parameter Individual Multicommodity MM—modified
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same as in Cortazar et al. (2008b). The In-Sample panel considers
contracts with maturities up to 2.5 years traded from 01-2001 to
12-2004. The Out-of-Sample-1 data considers contracts with
maturities up to 2.5 years traded from 01-2005 to 12-2006. The
Out-of-Sample-3 data considers contracts with maturities of more
than 2.5 years traded from 01-2005 to 12-2006. Cortazar et al.
(2008b) call this last panel ‘‘Extreme Out-of-Sample’’ but do not
report results for an Out-of-Sample-2 panel.

All our models use as the long-maturity commodity WTI
futures traded at Nymex.

Model parameters

For each of the three commodities (Silver, Copper and Brent) we
will calibrate three models. First, an individual model that uses only
one commodity. Second, the Cortazar et al. (2008b) Multicommodity
model that jointly calibrates the given commodity with WTI. Finally
our proposed Modified Multicommodity model (MM), which uses
the WTI only to obtain the parameters of the non-stationary factor
process and then estimates individually each commodity restricting
the non-stationary factor process parameters.

We estimate the Individual and the MM models for Silver and
Copper with three factors, and for Brent with four. The Multi-
commodity model for each commodity also has three or four
factors, respectively. Tables 3–5 show the parameter values and
standard deviations for each of the models including Silver,
Copper and Brent, respectively.

It can be seen that the parameters are statistically significant
and are reasonable in magnitude and sign.

Results

In what follows we present the results for silver, copper and
Brent, using the alternative models. To compare the relative
Table 3
Parameter values and standard deviations for Individual, Multicommodity and

Modified Multicommodity models for Silver.

Parameter Individual Multicommodity MM—modified
multicommodity

k2 0.904 (0.004) 0.275 (0.001) 0.770 (0.000)

k3 0.300 (0.003) 0.798 (0.003) 0.316 (0.000)

k4 – 0.131 (0.001) –

k5 – 0.412 (0.002) –

s1 0.219 (0.000) 0.359 (0.000) 0.275 (0.008)

s2 0.165 (0.001) 0.151 (0.0101) 0.145 (0.001)

s3 0.197 (0.000) 0.216 (0.001) 0.220 (0.000)

s4 – 0.453 (0.002) –

s5 – 0.304 (0.001) –

r12 �0.133 (0.002) 0.121 (0.001) �0.177 (0.008)

r13 �0.217 (0.001) �0.122 (0.001) �0.217 (0.000)

r14 – 0.046 (0.001) –

r15 – 0.139 (0.001) –

r23 �0.341 (0.003) 0.149 (0.005) �0.528 (0.001)

r24 – �0.154 (0.007) –

r25 – �0.107 (0.008) –

r34 – �0.177 (0.001) –

r35 – 0.111 (0.008) –

r45 – �0.138 (0.001) –

l1 0.102 (0.011) 0.054 (0.000) 0.197 (0.001)

l2 �0.413 (0.069) 0.318 (0.001) �0.405 (0.054)

l3 0.219 (0.061) 0.276 (0.001) 0.162 (0.068)

l4 – 0.105 (0.000) –

l5 – 0.185 (0.001) –

m 0.062 (0.010) 0.005 (0.000) 0.164 (0.002)

xCL – 0.018 (0.000) –

xSI 0.002 (0.000) 0.011 (0.000) 0.002 (0.000)

d – 0.997 (0.004) –

multicommodity

k2 0.460 (0.006) 0.384 (0.005) 0.451 (0.000)

k3 0.697 (0.005) 0.911 (0.002) 0.927 (0.000)

k4 6.951 (0.094) 0.435 (0.001) 6.951 (0.026)

s1 0.252 (0.003) 0.196 (0.000) 0.424 (0.000)

s2 0.885 (0.007) 0.178 (0.003) 0.886 (0.000)

s3 1.000 (0.006) 0.336 (0.003) 1.000 (0.000)

s4 0.121 (0.005) 0.080 (0.003) 0.178 (0.001)

r12 �0.567 (0.003) �0.389 (0.022) �0.567 (0.001)

r13 0.525 (0.003) 0.370 (0.020) 0.525 (0.000)

r14 �0.055 (0.002) �0.192 (0.017) �0.110 (0.000)

r23 �0.965 (0.011) �0.589 (0.004) �0.965 (0.000)

r24 0.275 (0.025) 0.180 (0.007) 0.275 (0.000)

r34 �0.310 (0.023) �0.087 (0.006) �0.310 (0.000)

l1 0.051 (0.001) 0.022 (0.000) 0.079 (0.000)

l2 �0.068 (0.359) 0.046 (0.058) 0.583 (0.279)

l3 0.213 (0.450) �0.003 (0.138) 0.692 (0.356)

l4 � 0.179 (0.080) 0.017 (0.000) �0.179 (0.094)

m 0.000 (0.001) 0.002 (0.000) 0.001 (0.000)

xCL – 0.005 (0.000) –

xCB 0.003 (0.000) 0.008 (0.000) 0.003 (0.000)

d11 – 1.000 (0.001) –

d12 – 1.000 (0.000) –

d13 – 1.000 (0.002) –

d14 – – –

d21 – 1.000 (0.001) –

d22 – 1.000 (0.000) –

d23 – 1.000 (0.000) –

d24 – 1.000 (0.003) –
performance of the models we use a procedure adapted from
Schwartz (1997). We must keep in mind, however, that the
purpose of our paper is not to find a forecasting model to predict
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prices, but we are rather interested in the cross-section extra-
polation of prices when there is information on short term prices
and we lack information on current long-term contract prices.
Thus we will emphasize cross-section over time-series tests.

First, for each of the commodities we compare the cross-
section behavior of the models for two dates. The first date is
selected from the set used to calibrate the model parameters, thus
short term contracts for that day are from the in-sample set, and
long term contracts are from the out-of-sample 2 set (see Fig. 3).
The second date is selected from the set not used to calibrate
model parameters, thus contracts belong to the out-of-sample 1
or to the out-of-sample 3, depending on their maturity. In this
way we can illustrate the extrapolation behavior of each model
for both types of dates.

If a full statistical comparison among the models is to be
performed, adapting a procedure from the literature could be
done (Pesaran and Deaton, 1978; Davidson and Mackinnon, 1981;
Clark and West, 2007; Diebold and Mariano, 1995). However, as
Schwartz (1997) points out, a statistical comparison between
these types of models is not straightforward, in particular because
tests are not easily adapted to this framework and some of the
models are nested while others are not. Moreover, as was stated
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Table 6
Mean errors (ME) and root mean square errors (RMSE) for silver under alternative mo

ME individual (%) ME multicommodity (%) ME MM (%

In sample 0.00 0.00 0.00

Out of sample 1 0.00 0.01 0.00

Out of sample 2 �1.05 0.52 �0.35

Out of sample 3 �1.65 1.48 �0.82
previously, in this paper we are basically interested in the cross-
section behavior of the models.

We then calculate the mean errors and the root mean square
errors for the 4 data panels and the 3 alternative models. Notice
that our out-of-sample 2 and out-of-sample 3 cross-section
analyses are really extrapolation exercises in which all contracts
have long maturities, while the Schwartz (1997) cross-section
analysis is an interpolation because out-of-sample contracts have
shorter maturities than some of the in-sample data. Also, our
reported out-of-sample errors really represent an upper bound,
because continuous updating of the parameters should provide
lower errors. Given that daily recalculation of all model
parameters is very high in computational resources, we follow
Schwartz (1997) and provide upper and lower bounds for cross-
section errors. Thus, we report for each long maturity contract in
the out-of-sample 3 data set, the lower and upper bounds for the
errors in each model. The upper bound is obtained using the in-
sample model parameters, while the lower bound is computed
with model parameters updated including the out-of-sample 1
set. As Schwartz (1997) points out a daily updating of model
parameters should provide errors between these bounds.

We now show the results of comparing the three models for
each commodity.
Results for Silver

Figs. 4 and 5 compare the adjustment of the three models for
two dates which extrapolate prices from the out-of-sample 2 and
the out-of-sample 3 panels. The figures show that for both dates,
extrapolated prices from the MM model are much better than
those from the alternative models.

Table 6 presents a summary of the errors (ME and RMSE) for
the 4 data panels and all alternative models. The first thing that
can be noted is that the Cortazar et al. (2008b) multicommodity
model does not seem to be effective for Silver, a commodity with
a low correlation with WTI. Second, our Modified Multicommod-
ity (MM) model performs very well making much better price
extrapolations than those of the other two alternative models.
dels and data panels.
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Fig. 6. Silver futures cross-section out-of-sample upper and lower bounds for

errors for contracts with different maturities.
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Finally, Fig. 6 shows the upper and lower bounds for the cross-
section errors of long maturity contracts for each of the models. It
can be seen that the MM model clearly outperforms the other
models for all contracts while there are no conclusive results
between the Individual and the Multicommodity models.
Results for Copper

Figs. 7 and 8 show the model adjustments for the Out-of-
Sample 2 and the Out-of-Sample 3 Copper panels. Again, the MM
model performs much better than the alternative models.

Table 7 presents the ME and RMSE errors for the 4 panels
and the alternative models. It can be noted that again our
MM-Modified Multicommodity model performs very well making
much better price extrapolations than the other alternative
models. Also that in this case extrapolating prices using the
Multicommodity model is slightly better than using the individual
model. Notice that the WTI-copper correlation is higher than
the WTI-silver correlation (even though much lower than the
WTI–Brent).

Fig. 9 shows the upper and lower bounds for the cross-section
errors of long maturity Copper Futures contracts for each of the
models. It can be seen that the MM model clearly outperforms the
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Table 7
Mean errors (ME) and root mean square errors (RMSE) for copper under alternative m

ME individual (%) ME multicommodity (%) ME MM (%

In sample 0.03 �0.11 0.00

Out of sample 1 0.02 �0.34 �0.01

Out of sample 2 �5.08 �3.71 3.61

Out of sample 3 �22.75 �16.27 �2.31
other models for all contracts while the multicommodity model
seems slightly better than the individual models.
Results for Brent

Table 8 shows the results of all three models for extrapolating
Brent prices. As discussed previously, for highly correlated
commodities, like WTI–Brent, the Cortazar et al. (2008b)
Muticommodity model is very good at price extrapolation.
Conclusions

There are many stochastic models of futures prices that do a
very good job at fitting price levels and volatility structures. Good
models require several risk factors with some of them non-
stationary and some mean reverting, to fit the stochastic behavior
of commodity futures.

One remaining problem in the literature is how to extrapolate
futures prices beyond the longest maturity that trades in the
market. This problem was partially dealt with in Cortazar et al.
(2008b) who propose a multicommodity model that uses the
information of one commodity that has long maturity contracts to
help estimate another commodity with shorter contracts. They
show their model behaves well for a pair of highly correlated
commodities like WTI–Brent.

This paper deals with the same problem but now for lower
correlated commodities like WTI-Silver and WTI-Copper showing
that the multicommodity model is not effective in these cases. It
then proposes a modified multicommodity model that only shares
the parameters of the non-stationary risk factor process, showing
that WTI prices help to estimate long-term Silver and Copper
prices in a much more effective way. Future research could
explore models including other commodities with low correlation
and comparing the effectiveness of the proposed model against
other benchmarks like univariate Garch model or some simple
vector–error–correction models.
odels and data panels.
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Fig. 9. Copper futures cross-section out-of-sample upper and lower bound errors

for different maturities.



Table 8
Mean errors (ME) and root mean square errors (RMSE) for Brent under alternative models and data panels. Multicommodity values are those reported in Cortazar et al.

(2008b).

ME individual (%) ME multicommodity (%) ME MM (%) RMSE individual (%) RMSE multicommodity (%) RMSE MM (%)

In sample 0.00 �0.01 0.00 0.31 0.80 0.31

Out of sample 1 1.17 0.36 �0.10 2.86a 1.06 0.32

Out of sample 3b 4.26 1.56 �1.60 5.15 1.74 2.39

a We report the number published in Cortazar et al. (2008b), even though redoing the calculation we obtain 0.11% which seems more reasonable.
b Cortazar et al. (2008b) report this result under the name ‘‘Extreme out of sample’’.
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