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Abstract 
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procedure is flexible, may be used with market prices of any oil contingent claim with 
closed form pricing solution, and easily deals with missing data problems.   The 
approach is implemented using daily prices of all futures contracts traded at the New 
York Mercantile Exchange between 1991 and 2001. In-sample and out-of-sample 
tests indicate that the model fits the data extremely well. Though the paper 
concentrates on oil, the approach can be used for any other commodity with well- 
developed futures markets. 
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1. Introduction 
 
This paper develops a parsimonious three-factor model of the term structure of oil 
futures prices that can be easily estimated from available futures price data. In 
addition, it proposes a new simple spreadsheet implementation procedure.  The 
procedure is flexible, may be used with market prices of any oil contingent claim with 
closed form pricing solution, and easily deals with missing data problems.   The 
approach is implemented using daily prices of all futures contracts traded at the New 
York Mercantile Exchange between 1991 and 2001. In-sample and out-of-sample 
tests indicate that the model fits the data extremely well.  Though the paper 
concentrates on oil, the approach can be used for any other commodity with well-
developed futures markets. 
 
In the last ten years there has been an increasing interest both by academics and 
practitioners in understanding the stochastic behavior of oil prices.  This interest 
comes from increasing price volatility, which makes predictions more difficult.  Also, 
modern asset pricing models of oil-related real assets such as oil-field development or 
extraction projects, consider these assets as real options contingent on the oil price 
level and its stochastic process (Paddock et al., 1988).     In addition, pricing of new 
oil-linked financial instruments requires knowledge of the stochastic behavior of the 
underlying asset. Finally, commodity price risk, which can have a huge impact on a 
firm’s profits (Culp and Miller (1994)), may be successfully hedged to the extent that 
the stochastic process for the underlying commodity is known.  
  
 It is well known that the futures price of a financial asset that pays no dividends is 
equal to the spot price of the asset plus the interest rate (carrying costs) over the life 
of the futures contract. Any dividend payment on the financial asset should be 
subtracted from the carrying costs. In the case of commodities, futures prices are 
normally lower than the spot price plus the interest rate over the life of the futures 
contract. This “shortfall”, which is like an implicit dividend that accrues to the holder 
of the spot commodity but not to the holder of the futures contract, is what is known 
as the convenience yield of the commodity (Brennan, 1991).   
 
Stochastic models of the behavior of commodity prices differ on the role played by 
the convenience yield and on the number of factors used to describe uncertainty. 
Early models assumed a constant convenience yield and a one-factor Brownian 
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motion (Brennan and Schwartz, 1985). This random walk specification for 
commodity prices was used until a decade ago, when mean reversion began to be 
included as a response to the evidence that volatility of futures returns declines with 
maturity. One-factor mean reverting models can be found for example in Ross (1995), 
Schwartz (1997), Cortazar and Schwartz (1997), Laughton and Jacoby (1993 and 
1995). 
 
An undesirable implication of one-factor models, however, is that all futures returns 
are perfectly correlated, a fact that defies empirical evidence.  To account for a more 
realistic stochastic behavior, two-factor models with mean reversion were introduced.  
Examples are Gibson and Schwartz (1990), Schwartz and Smith (2000) and Schwartz 
(1997).   
  
Enlightening as they may be, these stochastic models have been adopted rather slowly 
by practitioners.  One possible reason for this could be that even though two-factor 
models behave reasonably well most of the time, for some market conditions they 
behave poorly, making daily estimations somewhat unreliable.  Also, most parameter 
estimation procedures proposed in the literature are rather involved and require 
extensive data aggregation, which translates into substantial information loss. 
 
In this paper we propose a new three-factor model that performs much better than 
existing two-factor models. We also suggest an implementation procedure that uses a 
basic spreadsheet to calibrate the model, which considerably simplifies the 
application of the approach. Even though three-factor models seem to be necessary to 
explain day-to-day variations in commodity futures term structures, there are very 
few examples of this type of models in the literature.  Schwartz (1997) presents a 
three-factor model, but its third factor is calibrated using bond prices instead of 
commodity futures prices.  Cortazar and Schwartz (1994) also develop a three-factor 
model but use a no-arbitrage approach more in the spirit of Heath et al. (1992).   The 
three-factor model proposed in this paper is related to Schwartz (1997) but all three 
factors are calibrated using only commodity prices.  
 
We also show a model implementation that can be seen as a simpler alternative to the 
Kalman filtering estimation procedure typically proposed in the literature. Even 
though this procedure exhibits strong and desirable econometric properties, it places 
rather high implementation requirements.  In typical implementations of the Kalman 
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filter procedure (Schwartz, 1997) missing data problems are so severe that many 
market transactions are either discarded or aggregated with others of close but 
different maturities, with great information loss.  Also, it becomes increasingly more 
complex to include contracts with nonlinear pricing expressions such as options in the 
estimation. 
 
Our proposed alternative procedure handles very easily the above restrictions: it 
makes full use of all commodity-linked market asset prices and is very simple to 
implement with a spreadsheet.  This could greatly expand the use of this type of 
models by practitioners. 
 
This paper is organized as follows.  The model is developed in Section 2.  Section 3 
explains the proposed estimation procedure.  Section 4 implements the approach 
using oil futures prices from 1991 to 2001.  Finally, Section 5 concludes. 
 
2. The Model 
 
Given that our proposed three-factor model can be seen as an extension of Schwartz’s 
(1997) two-factor model originally proposed in Gibson and Schwartz (1990), we start 
by discussing the latter. 
 
2.1 The Two-Factor Schwartz (1997) Model 
 
Defining S as the spot price of oil and δ as the instantaneous convenience yield, 
Schwartz (1997) proposes the following oil price dynamics: 
 

( ) 11SdzSdtdS σδµ +−=  (1.) 

( ) 22dzdtd σδακδ +−=  (2.) 

with 
 
dz1  and dz2 ~ N (0, dt½) (3.)  
 

dtdzdz ρ=21  (4.)  
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In this model, µ represents the long-term total return on oil (price appreciation plus 
convenience yield), κ the mean reverting coefficient and α the long-term 
convenience yield. σ1 and σ2 are the volatilities of the spot price and the convenience 
yield dynamics, respectively. ρ  is the correlation between the stochastic processes. 

 
For purposes of valuation we use the risk-neutral or risk-adjusted stochastic 
processes. To obtain the risk-adjusted processes for the spot and the convenience 
yield, Schwartz (1997) substitutes µ by the risk free interest rate r in the former, and 
deducts the market price of convenience yield risk λ from the expected drift in the 
latter: 
 

( ) ∗+−= 11SdzSdtrdS σδ   (5.)    

( )[ ] ∗+−−= 22dzdtd σλδακδ   (6.) 

dtdzdz ρ=∗∗
21  (7.) 

 
Using standard arguments it is easy to show that futures prices must satisfy the 
following partial differential equation: 
 

( ) ( )[ ] 0
2
1

2
1 2

221
22

1 =−−−+−+++ TSSSS FFSFrFSFFS δδδδ λδακδσρσσσ  (8.) 

 
subject to the boundary condition: 
 
 F(S, δ, T=0) = S (9.) 
 
As shown in Jamshidian and Fein (1990) and Bjerksund (1991), the solution to the 
above equation is: 
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2.2 A Parsimonious Two-Factor Model 
 
In this section we modify the model described in the previous one to obtain a more -
parsimonious representation of the two-factor model.  This modification is essential 
for understanding the extension to a three-factor model we develop in the next 
section. 
 
A closer look at the Schwartz (1997) model shows that it can be rewritten in a simpler 
way with fewer parameters. We can define a new state variable y as the demeaned 
convenience yield δ by subtracting from it the long-term convenience yield α.  
 
y   = δ − α (11.) 
 
We substitute Equation (11) in Equation (1) and define ν as the long-term price return 
(price appreciation) on oil obtained by deducting the long-term convenience yield α 
from the long term total return µ. That is: 
 
ν   = µ − α (12.) 

 
Equations (1) and (2) then become: 
  

( ) 11SdzSdtydS σν +−=  (13.) 

 
22dzydtdy σκ +−=  (14.) 

 
In this formulation of the model we treat both factors S and y as non-traded state 
variables and, therefore, to transform the original processes ((13) and (14)) into the 
risk-adjusted processes we assign one risk premium to each process. Defining λ i as 
the risk premium associated with the factors, the risk-adjusted processes are: 
 

( ) ∗+−−= 111 SdzSdtydS σλν   (15.) 

  

( ) ∗+−−= 222 dzdtydy σλκ  (16.) 
 

dtdzdz ρ=∗∗
21  (17.) 
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It must be stressed that this new model formulation, which has one parameter less 
than Schwartz (1997) has the same explanatory power but it is more parsimonious 
and is the basis of the three-factor model we develop later.  Also with this formulation 
it becomes clear why Schwartz (1997) did not estimate the risk free interest rate from 
futures prices, but rather obtained it from bond data.  
 
Another benefit of this new formulation is that it is more intuitive for practitioner’s 
use.  Returns are now defined in terms of the long-term price appreciation, which is 
more in line with industry practice than using the long-term convenience yield 
concept. 
 
We now turn to the explanatory power issue of the two-factor model. Even though 
Schwartz (1997) presents reasonable mean square errors when applying the two- 
factor model to a set of market prices, these averages hide the fact that for some days 
the model is unable to capture the behavior of market prices.  This may be 
unacceptable for some model applications, such as its use to support trading. An 
example of a poor fit between market prices and the two-factor model is illustrated in 
Figure 1 by comparing model and observed market prices for oil futures traded at 
NYMEX on January 8th, 1999.  
 
The benefits of using the three-factor model described in the next section are 
illustrated in Figure 2, where we use it to explain the same market prices shown 
before, finding a remarkably better fit.  This performance improvement, which may 
become important in many cases, is obtained without worsening the fitness for other 
dates for which the two-factor model behaved reasonably well. 
 
2.3 A Three-Factor Model for Oil Prices. 
  
We now present the proposed three-factor model.  We start with our reformulated 
version of the two-factor Schwartz (1997) model defining as state variables the 
commodity spot price, S, and the demeaned convenience yield, y.  As in the two- 
factor model, the instantaneous expected spot price return is ν minus y and the 
expected long-term spot price return is ν.  Thus y can also be defined as the deviation 
of spot price returns from its long-term value. This return deviation y is modeled as 
reverting with a coefficient k to its long-term value, which is by definition zero. 
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In our model we consider as a third risk factor the long-term spot price return, ν, 
allowing it to be stochastic and to mean revert to a long-term average ν , with mean 
reversion coefficient a and volatility 3σ .  Recall that Schwartz (97) also defined a 

three-factor model, but the third factor was the risk free interest rate estimated from 
bond data.  So, in that model futures market prices were used only to estimate the 
parameters of a two-factor model.  In our model, on the other hand, the third factor is 
more general and may include, but is not limited to, perturbations in the risk free 
interest rate.  In addition, all model parameters are estimated using only futures 
prices. 
 
The dynamics of the state variables for the proposed three-factor model for oil prices 
is then: 
 

( ) 11SdzSdtydS σν +−=   (18.)

  
22dzydtdy σκ +−=   (19.) 

 
( ) 33dzdtad σννν +−=   (20.) 

 
with 
 

dtdzdz 1221 ρ=   (21.) 

 
dtdzdz 1331 ρ=   (22.) 

 
dtdzdz 2332 ρ=   (23.) 

 
Defining λ i as the risk premium for each of the three risk factors, we can write the 
risk-adjusted processes, used for valuation purposes, as: 
 

( ) ∗+−−= 111 SdzSdtydS σλν   (24.) 

  
( ) ∗+−−= 222 dzdtydy σλκ   (25.) 
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( ) *
333)( dzdtad σλννν +−−=   (26.) 

 
dtdzdz 1221 ρ=∗∗   (27.) 

 
dtdzdz 1331 ρ=∗∗   (28.) 

 
dtdzdz 2332 ρ=∗∗   (29.) 

 
Using standard arguments it can be shown that futures prices must satisfy the 
following partial differential equation: 
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 (30.) 

 
 
subject to the terminal boundary condition: 
 
F(S, y, ν, T = 0) = S (31.) 
 
which gives the following solution for the futures price: 
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To determine the volatility of futures returns implied by this model we apply Ito’s 
lemma and obtain: 
 

2

2
1),,,( dSFdTFdFdyFdSFTySdF SSTyS ++++= νν ν  (33.) 

 
from where we obtain: 
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which converges, as T goes to infinity, to: 
 

( )
akakak

TF
233213311221

2

2
3

2

2
22

1
2 222 ρσσρσσρσσσσσσ −+−++=∞→  (35.) 

 
 
Equations (34) and (35) imply a volatility term structure decreasing with maturity 
which converges to a positive constant.  This is consistent with a mean reverting non-
stationary process.   
 
3. Model Implementation 
 
In this section we suggest a new way of estimating the parameters of the model that 
has many advantages relative to the more complicated methods employed in the 
literature. We are looking for an estimation procedure that is both accurate and simple 
enough to facilitate the task of updating parameter estimates on a regular basis as new 
market information arrives.    
 
Standard commodity model implementations  (Schwartz, 1997, Schwartz and Smith, 
2000) make use of rather complex Kalman filtering methods that jointly optimize 
time series and cross sectional data. The main advantage of this procedure is that, in 
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addition to the point estimates of the parameters, it provides statistical confidence 
intervals.   
 
The Kalman filter approach, however, has relatively high implementation 
requirements.  One of the main issues is the handling of missing observations in the 
data, which is particularly important when using financial instruments, like futures, 
that only trade for specific maturities.  In typical implementations of this procedure 
contracts with close, but different maturities are grouped together to complete the 
data sets used in the estimation.  The consequence of these groupings is that a 
substantial amount of data is discarded with its associated information loss.  This 
problem is particularly acute when new contracts are introduced in the market and 
there are no complete time series data for a given maturity.   For example, oil markets 
currently trade futures contracts for over thirty-five different maturities while only a 
few years ago they only traded futures contracts for less than twenty different 
maturities.   
 
Current implementations of the Kalman filter methodology for this type of models 
require linearity in the pricing expressions, which restricts its applications to linear 
payoffs such as futures. Nonlinear Kalman filter estimations do exist in the literature, 
but are much harder to apply. Even though in the current implementation of our 
model we only use futures prices in the estimation, it would be easy to include 
contracts with nonlinear payoffs such as options. 
 
Our proposed estimation procedure makes use of all available data while keeping a 
fairly intuitive and simple approach.  We implement our estimation procedure in a 
simple general-purpose spreadsheet using the standard Solver of Excel.   
 
We now briefly describe the proposed implementation procedure. Assume we want to 
calibrate the model using futures prices for N dates ti, with i = 1,…..,N,   and that for 
each date ti there are Mi contracts with different maturities.  Conceptually the 
procedure works as follows: for a given initial set of parameters we use the cross 
section of futures prices to estimate the state variables for that particular day.  Then 
we use the estimated state variables for the whole sample period and the full cross 
section and time series of observed futures prices to estimate a new set of parameter 
values. With this new set of parameters we repeat the procedure until convergence. 
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More concretely, for a given set of model parameters, Ω, we can estimate the state 
variables for each day i, as the solution to the following minimization problem: 
 

{ } ( )( )2

( ), ( ), ( ) 1

ˆ( ), ( ), ( ) argmin   ( ), ( ), ( ), ;
i

i i i

M

i i i ij i i i j i ij
S t y t t j

S t y t t LnF S t y t t T t LnF
ν

ν ν
=

∈ −∑ Ω −  (36.) 

for 1, 2,...i N=  

with 

 1 2 3 1 2 3 12 13 23: { , , , , , , , , , , , }aκ ν λ λ λ σ σ σ ρ ρ ρΩ  

 

where is the model price and the observed market price at date i for maturity j. ijF
∧

ijF

 
Since the logarithm of the futures model price is linear in the state variables, Equation 
(36) implies that the problem of estimating the unobserved state variables is 
equivalent to performing a simple linear regression. We can therefore obtain 
estimates for the unobserved state variables, given the cross section of observed 
futures prices and a set of model parameters, using least squares regression. This 
estimation methodology of the unobserved state variables uses all price information 
available each day.  
 
To find the optimal set of parameter values, we solve the following minimization 
problem: 
 

( )( )

{ } ( )( )
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{ }  =1 1 
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( ), ( ), ( ) 1

ˆmin   ( ), ( ), ( ), ;
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ˆ( ), ( ), ( ) argmin   ( ), ( ), ( ), ;
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i i i
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ij i i i j i ij
i j
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i i i ij i i i j i ij
S t y t t j

LnF S t y t t T t LnF

s t

S t y t t LnF S t y t t T t LnF
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ν ν

Ω =

=
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∑ Ω −

 (37.) 

for 1, 2,...i N=  
 

and to volatility, correlation and risk premiums consistent with the time series 
properties of the state variables.  
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In practice, given that some of the parameters can be estimated directly from the time 
series of the state variables, we can further simplify the estimation by writing the 
optimization problem using an even smaller number of parameters. The first thing to 
notice is that the Equation (32) can be rewritten maintaining three (modified) state 
variables but reducing the number of parameters from twelve to seven. 
 
The state variables are S, and the modified state variables and ŷ ν̂  defined as: 

 

κ
λ 2ˆ += yy  (38.)

  

κ
λλνν 2

1ˆ +−=   (39.) 

 
The seven parameters are now: 
 

2 2
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With these modifications the futures price Equation (32) becomes: 
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The optimization problem then reduces to: 
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 (46.) 

for 1, 2,...i N=  
 
and also subject to restrictions such that volatility and correlations are consistent with 
the time series properties of the state variables.   
 
This modification considerably simplifies the estimation procedure since we only 
have to estimate seven parameters.  In what follows we will be using this modified 
model in all the calculations. 
 
The proposed procedure provides results reasonably close to those of the more formal 
Kalman filter estimation.  For example, applying both estimation procedures to the 
weekly oil futures prices traded at NYMEX between 1990 and 1995 (similar to Panel 
B in Table 1 of Schwartz (1997)) we find very similar mean square errors (MSE). 
Figure 3 shows that the estimated values for the state variables are almost 
indistinguishable between the two procedures. Figure 4 shows that the percentage 
differences between the estimated values, using both procedures, for the six and 
twelve-month futures prices are very small and generally smaller than 0.5%. 
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Even though this method has the disadvantage of not providing distributions for 
parameter estimates, its simplicity, accuracy, flexibility and easier use of the complete 
data set, makes it a valid alternative for many applications. 
 
4. Results 
 
Having defined the model and the calibration procedure, we now present the results 
of applying it to recent oil futures price data.  In this section we first define the data 
used, then we analyze in-sample model behavior, to finally show the results of 
applying the model to out-of-sample data. 
 
The data used are 76,121 daily prices corresponding to all futures contracts traded at 
the NYMEX from January 2nd 1991 to December 30th 2001.  We do not aggregate 
data but use each available transaction separately. The number of different contracts 
traded each day at NYMEX has been increasing over the years, starting with 22 
different contracts with a maximum maturity of 3 years, to end the sample period 
with 35 different contracts with maturity from 1 month to 7 years.   Table 1 describes 
the futures data used.   
 
To test the model we split the data into two sets.  Data-set 1 includes only 
transactions from January 2nd 1991 to December 30th 1998.  We will use this data set 
to make our initial model calibration and to analyze the in-sample properties of our 
model.  Data-set 2 includes the whole set from January 2nd 1991 to December 30th 
2001, where the last three years will be used later to make the out-of-sample analysis 
of the model. 
 
Our in-sample results using Data-set 1 are reported in Figures 5 to 7.  Figure 5 shows 
the dollar root mean square error (RMSE) between model and market prices across 
maturities.   It can be seen that with the exceptions of the shortest and the longest 
maturity, the model estimates a futures price with a RMSE in the range of $0.05 - 
$0.15.      
 
Figure 6 presents the RMSE analysis in percentage terms across maturities.  The 
average percentage RMSE is 0.42% and again it can be seen that the worse fit is for 
the shortest and the longest maturity contracts.    All other contacts have a model 
RMSE between 0.25 and 0.75%. 
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Figure 7 presents another measure of model goodness-of-fit by comparing the implied 
model volatility for different maturities with historical futures return volatility. Even 
though the model seems to exhibit a slight upward biased volatility for long-term 
contracts, it is remarkable how closely it tracks historical volatility for contracts with 
maturities up to 3 years. 
 
To make our out-of-sample analysis we use Data-set 2 and analyze the performance 
of the model over the last three years (1999 to 2001).  Our initial model calibration, 
for transactions in the first quarter of 1999, is done with Data-set 1.  The model is 
then recalibrated on a quarterly basis (on the last day of March, June, September and 
December of each year) and parameter values are not updated for the following three 
months.  This out-of-sample analysis is done using only past information, available at 
the time of the calibration and represents an upper bound for the errors.  More 
frequent calibrations could reduce model errors, since more recent prices would be 
included. 
 
Results for the three-year out-of-sample data are now presented. We start by noting 
that the model is very flexible in that it can deal with very different shapes of the term 
structure of futures prices.  To illustrate this point we select arbitrary dates in the 
sample period in which futures oil prices exhibit either backwardation or contango.   
Figure 8 is representative of a day with a high degree of backwardation, while Figure 
2 is an example of a day with prices that exhibit a strong contango.   These figures are 
illustrations of how well the model may be used to explain very different term 
structures for oil futures prices. 
 
Table 2 provides the estimated quarterly parameter values from 12/98 to 12/01 for the 
three-factor model of oil prices. These results are obtained by solving the 
optimization problem for the parameters described earlier and by computing the 
volatility and correlation coefficients from the time series of state variables.  Note that 
most of the parameters are quite stable over time.  The only ones that are not stable 
are the risk premiums associated with the factors.  These are the same parameters that 
turn to be statistically insignificant in the Kalman filter estimation (Schwartz, 1997). 
 
Using the parameter values in Table 2 we compute the out-of-sample model errors 
over the three-year period reported in what follows. Table 3 compares the RMSE  (in 
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dollars and percentage) for both the in-sample and the out-of-sample data sets. As 
expected, the out-of-sample data set induces higher errors than the in-sample one, in 
this case by a factor of approximately two. 
 
Figures 9 and 10 plot the average errors and the one standard deviation interval of the 
futures out-of sample errors between 1999 and 2001 for different maturities.  It can be 
seen that for most maturities the mean error is very close to zero and the standard 
deviation of the errors is less than 1% (or less than US$0.25). Note that these results 
were obtained recalibrating the model every quarter; obviously, more frequent 
parameter recalibration would increase even more the goodness-of-fit of the model.  
 
4. Conclusions 
 
In this article we develop a parsimonious three-factor model of the term structure of 
futures oil prices, which fits the data extremely well.  In addition, and very 
importantly, we propose an implementation procedure that significantly simplifies the 
estimation methods proposed in the literature.  These factors make the proposed 
approach ideally suited for practical applications in the valuation and hedging of real 
and financial oil-contingent claims. The method can be used for other commodities as 
well; for example, we have also implemented the model using copper futures price 
data with similar results. 
 
The approach presented in the paper has been used in practice for almost three years 
to provide an estimate of the term structure of oil futures prices to an oil company.  It 
is also currently used by the website www.riskamerica.com to provide daily estimates 
of the oil and copper futures curves. 
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Table 1 
Oil Data  

Daily Observations from 01/02/1991 to 12/30/2001 
 

Futures 
Contract 

Mean Price 
(Standard Error)

Mean Maturity 
(Standard Error) 

Number of 
Observations 

F1 US$ 20.78 (4.73) 0.11 (0.02) years 2736 
F2   20.63 (4.48) 0.19 (0.02)   2738 
F3   20.49 (4.27) 0.27 (0.02)   2737 
F4   20.36 (4.07) 0.36 (0.02)   2738 
F5   20.25 (3.89) 0.44 (0.02)   2738 
F6   20.15 (3.72) 0.52 (0.02)   2737 
F7   20.05 (3.56) 0.61 (0.02)   2738 
F8   19.96 (3.42) 0.69 (0.02)   2735 
F9   19.88 (3.28) 0.77 (0.02)   2734 
F10   19.81 (3.16) 0.86 (0.02)   2722 
F11   19.74 (3.04) 0.94 (0.02)   2726 
F12   19.68 (2.94) 1.03 (0.02)   2725 
F13   19.63 (2.83) 1.11 (0.02)   2716 
F14   19.58 (2.73) 1.19 (0.02)   2713 
F15   19.55 (2.64) 1.28 (0.02)   2702 
F16   19.50 (2.55) 1.36 (0.02)   2703 
F17   19.48 (2.47) 1.44 (0.02)   2697 
F18   19.47 (2.44) 1.52 (0.02)   2559 
F19   19.53 (2.63) 1.61 (0.02)   1923 
F20   19.52 (2.57) 1.69 (0.02)   1890 
F21   19.48 (2.51) 1.77 (0.02)   1891 
F22   19.44 (2.44) 1.86 (0.02)   1915 
F23   19.47 (2.37) 1.94 (0.02)   1872 
F24   19.46 (2.32) 2.02 (0.02)   1820 
F25   19.51 (2.31) 2.11 (0.02)   1656 
F26   19.50 (2.22) 2.19 (0.02)   1644 
F27   19.50 (2.17) 2.28 (0.02)   1617 
F28   19.49 (2.08) 2.36 (0.02)   1595 
F29   19.56 (2.04) 2.44 (0.02)   1091 
F30   19.54 (1.93) 2.52 (0.02)   631 
F36   19.38 (1.71) 2.81 (0.14)   2592 
F48   19.14 (1.76) 3.54 (0.28)   1575 
F60   19.33 (1.62) 4.54 (0.28)   1316 
F72   19.41 (1.50) 5.56 (0.28)   1150 
F84   19.63 (1.33) 6.54 (0.28)   1049 

     TOTAL 76121 
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Table 3.: 

RMSE for In-Sample (1991 to 1998) and 
Out-of-Sample (1999 to 2001) Data 

 
In-Sample Out-of-Sample Contract 

Type Dollars Percentage Dollars Percentage 
F1 0.22 1.03% 0.43 1.61% 
F2 0.06 0.30% 0.13 0.51% 
F3 0.10 0.52% 0.17 0.67% 
F4 0.12 0.61% 0.20 0.80% 
F5 0.11 0.55% 0.19 0.75% 
F6 0.08 0.43% 0.17 0.68% 
F7 0.06 0.33% 0.15 0.60% 
F8 0.05 0.26% 0.14 0.58% 
F9 0.04 0.23% 0.12 0.49% 
F10 0.04 0.25% 0.11 0.47% 
F11 0.05 0.27% 0.12 0.52% 
F12 0.05 0.28% 0.11 0.50% 
F13 0.05 0.28% 0.10 0.46% 
F14 0.05 0.28% 0.09 0.43% 
F15 0.05 0.28% 0.09 0.44% 
F16 0.05 0.27% 0.09 0.44% 
F17 0.05 0.26% 0.09 0.43% 
F18 0.05 0.26% 0.09 0.43% 
F19 0.05 0.28% 0.09 0.44% 
F20 0.05 0.28% 0.10 0.45% 
F21 0.05 0.27% 0.10 0.47% 
F22 0.05 0.26% 0.11 0.51% 
F23 0.05 0.26% 0.13 0.57% 
F24 0.05 0.27% 0.14 0.63% 
F25 0.05 0.28% 0.15 0.67% 
F26 0.06 0.30% 0.16 0.70% 
F27 0.06 0.33% 0.16 0.74% 
F28 0.07 0.38% 0.17 0.76% 
F29 0.07 0.36% 0.17 0.77% 
F30 0.06 0.33% 0.16 0.74% 
F36 0.10 0.53% 0.14 0.68% 
F48 0.13 0.68% 0.16 0.77% 
F60 0.14 0.72% 0.18 0.87% 
F72 0.13 0.69% 0.25 1.30% 
F84 0.23 1.18% 0.44 2.21% 

     All      0.083 0.425% 0.172 0.763% 
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