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Michael J. Brennan 
Eduardo S. Schwartz 
University of British Columbia 

Evaluating Natural Resource 
Investments* 

Notwithstanding impressive advances in the 
theory of finance over the past 2 decades, practi- 
cal procedures for capital budgeting have 
evolved only slowly. The standard technique, 
which has remained unchanged in essentials 
since it was originally proposed (see Dean 1951; 
Bierman and Smidt 1960), derives from a simple 
adaptation of the Fisher (1907) model of valua- 
tion under certainty: under this technique, ex- 
pected cash flows from an investment project are 
discounted at a rate deemed appropriate to their 
risk, and the resulting present value is compared 
with the cost of the project. This standard text- 
book technique reflects modern theoretical de- 
velopments only insofar as estimates of the 
discount rate may be obtained from crude 
application of single period asset pricing theory 
(but see Brennan 1973; Bogue and Roll 1974; 
Turnbull 1977; Constantinides 1978). 

The inadequacy of this approach to capital 
budgeting is widely acknowledged, although not 
widely discussed. Its obvious deficiency is its 
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The evaluation of min- 
ing and other natural 
resource projects is 
made particularly 
difficult by the high de- 
gree of uncertainty at- 
taching to output 
prices. It is shown that 
the techniques of con- 
tinuous time arbitrage 
and stochastic control 
theory may be used not 
only to value such 
projects but also to de- 
termine the optimal 
policies for developing, 
managing, and aban- 
doning them. The ap- 
proach may be adapted 

*-to a wide variety of 
contexts outside the 
natural resource sector 
where uncertainty 
about future project 
revenues is a 
paramount concern. 
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total neglect of the stochastic nature of output prices and of possible 
managerial responses to price variations. While price uncertainty is 
unimportant in applications for which the relevant prices are reason- 
ably predictable, it is of paramount importance in many natural re- 
source industries, where price swings of 25%-40% per year are not 
uncommon.' Under such conditions the practice of replacing distribu- 
tions of future prices by their expected values is likely to cause errors 
in the calculation both of expected cash flows and of appropriate dis- 
count rates and thereby to lead to suboptimal investment decisions. 

The model for the evaluation of investment projects presented in this 
paper treats output prices as stochastic. While this makes it particu- 
larly suitable for analyzing natural resource investment projects, where 
uncertain prices are a particular concern, the model may be applied in 
other contexts also. The model also takes explicit account of man- 
agerial control over the output rate, which is assumed to be variable in 
response to the output price; moreover, the possibility that a project 
may be closed down or even abandoned if output prices fall far enough 
is also considered. Variation in risk and the discount rate due both to 
depletion of the resource and to stochastic variation in the output price 
are explicitly taken into account in deriving the equilibrium condition 
underlying the valuation model. 

Two essentially distinct approaches may be taken to the general 
problem of valuing the uncertain cash flow stream generated by an 
investment project. First, the market equilibrium approach requires 
both complete specification of the stochastic properties of the cash 
flow stream and an underlying model of capital equilibrium whose 
parameters are known.2 A general limitation of this approach is that it 
is difficult to devise adequately powerful tests of the model of market 
equilibrium and to obtain refined estimates of the model parameters. In 
the present instance, the market equilibrium approach-is further ham- 
pered by the difficulty of determining the stochastic properties of the 
cash flow stream that depend on the stochastic process of the output 
price: as we have already remarked, it is often very difficult to estimate 
the expected rate of change in commodity prices. Therefore in this 
paper we resort to a second approach, which yields the value of one 
security relative to the value of a portfolio of other traded securities. 

Our approach is to find a self-financing portfolio whose cash flows 
replicate those which are to be ~ a l u e d . ~  The present value of the cash 

1. Bodie and Rosansky (1980) report that the standard deviation of annual changes in 
futures prices over the period 1950-76 was 25.6% for silver, 47.2% for copper, and 25.2% 
for platinum. 

2. See, e.g., the framework developed by Cox, Ingersoll, and Ross (1978); this was 
used by Brennan and Schwartz (1982a, 1982b) to analyze the valuation of regulated 
public utilities. 

3.  A self-financing portfolio has the property that its value at any time is exactly equal 
to the value of the investment and cash flow distributions required at that time. See 
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flow stream is then equal to the current value of this replicating port- 
folio. When a replicating self-financing portfolio can be constructed, 
our approach offers several advantages over the market equilibrium 
approach; not only does it obviate the need for a discount rate derived 
from an inade"quate1y supported model of market equilibrium but, most 
important in the current context, it eliminates the need for estimates of 
the expected rate of change of the underlying cash flow and therefore 
of the output price. 

Construction of the requisite replicating self-financing portfolio rests 
on the assumption that the convenience yield on the output commodity 
can be written as a function of the output price alone and that the 
interest rate is nonstochastic. These assumptions suffice to yield a 
deterministic relation between the spot and futures price of the com- 
modity, and the cash flows from the project can then be replicated by a 
self-financing portfolio of riskless bills and futures contracts. 

Specific limitations of the valuation model include the assumptions 
that the resource to be exploited is homogeneous and of a known 
amount, that costs are known, and that interest rates are nonsto- 
chastic. Any one of these assumptions may be relaxed at the expense 
of adding one further dimension to the state space on which the model 
is defined: as a practical matter it would be difficult to obtain tractable 
results if more than one of these assumptions were relaxed at a time. 
While the model as presented here presupposes the existence of a 
futures market in the output commodity, it would be straightforward to 
derive an analogous model in a general equilibrium context similar to 
that employed by Brennan and Schwartz (1982a, 1982b). 

To allow for dependence of the output rate on the stochastic output 
price the capital budgeting decision is modeled as a problem of stochas- 
tic optimal control. Stochastic optimal control theory has been applied 
to the investment decision in a general context by Constantinides 
(1978), and in the specific context of a regulated public utility by Bren- 
nan and Schwartz (1982a, 19826). Dothan and Williams (1980) have 
also analyzed the capital-budgeting decision within a similar frame- 
work. Pindyck (1980), like us, applies stochastic optimal control to the 
problem of the optimal exploitation of an exhaustible resource under 
uncertainty. In some respects Pindyck's analysis is more general than 
ours: in particular, he allows the level of reserves of the resource to 
vary stochastically and to be influenced by exploration activities. On 
the other hand, by confining his attention to risk-neutral firms he ne- 
glects the issues of risk and valuation that are the focus of the capital- 
budgeting decision and of this paper. Other writers who have recog- 
nized the importance of the option whether or not to exploit a natural 

Harrison and Kreps (1979). The notion of a replicating self-financing portfolio is closely 
relared to the option-pricing models of Black and Scholes (1973) and Merton (1973). 
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resource, which is inherent in the ownership of the resource, include 
Tourinho (1979); Brock, Rothschild, and Stiglitz (1982); and Paddock, 
Siegel, and Smith (1982). These writers have not however analyzed the 
present value of the decision to exploit a given resource or the optimal 
operating policy for a given facility, as we do, and Brock et al. do not 
exploit the arbitrage implications of a replicating self-financing port- 
folio. 

Miller and Upton (1985) develop and test empirically a model for the 
valuation of natural resources based on the Hotelling model. Although 
it is close in spirit to our model, in that the spot price of the commodity 
is a sufficient statistic for the value of the mine, unlike ours their model 
assumes no upper limit on the output rate and ignores the possibility of 
closing and reopening the mine in response to current market condi- 
tions. As they point out this may be a good approximation when output 
prices exceed extraction costs by a wide margin, just as the value of a 
stock option approaches its intrinsic value when it is deep in the 
money. 

The general type of model presented here lends itself to use in a 
number of related contexts-most obviously, to corporations consid- 
ering when, whether, and how, to develop a given resource; to finan- 
cial analysts concerned with the valuation of such corporations; and to 
policymakers concerned with the social costs of layoffs in cyclical 
industries and with policies to avert them. The model is well suited to 
analysis of the effects of alternative taxation, royalty, and subsidy 
policies on investment, employment, and unemployment in the natural 
resource sector. 

Section I develops a general model for valuing the cash flows from a 
natural resource investment. A specialized version of the general 
model is presented in Section 11. Under the assumption of an inex- 
haustible resource the model allows for only a single feasible operating 
rate when the project is operating but includes the possibility of costs 
of closing and reopening the project. Section I11 discusses a numerical 
example based on the general model. Section IV considers the prob- 
lem, previously raised by Tourinho (1979), of the optimal timing of 
natural resource investments. Section V discusses briefly the applica- 
tion of the model to the analysis of fixed price long term purchase 
contracts for natural resources. 

I. The General Valuation Model 

The first step in analyzing an investment project is to determine the 
present value of the future cash flows it will generate and to compare 
this present value with the required investment. If the present value 
exceeds the investment a further decision is whether to proceed with 
the project immediately or to wait. We shall postpone consideration of 
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this second, dynamic aspect of the capital-budgeting decision until 
Section 111 and in this and the following section will restrict our atten- 
tion to the problem of determining the present value of the cash flows 
from a project. In this section we develop a general model, a specializa- 
tion of which is considered in Section 11. 

To focus discussion we will suppose that the project under consider- 
ation is a mine that will produce a single homogeneous commodity, 
whose spot price, S ,  is determined competitively and is assumed to 
follow the exogenously given continuous stochastic process 

where dz is the increment to a standard Gauss-Wiener process; u ,  the 
instantaneous standard deviation of the spot price, is assumed to be 
known; and p, the local trend in the price, may be stochastic. 

As a preliminary to developing the valuation model it will prove 
useful to consider the relation between spot and futures prices and the 
convenience yield on the commodity. The convenience yield is the 
flow of services that accrues to an owner of the physical commodity 
but not to the owner of a contract for future delivery of the commodity 
(see Kaldor 1939; Working 1948; Brennan 1958; Telser 1958). Most 
obviously, the owner of the physical commodity is able to choose 
where it will be stored and when to liquidate the inventory. Recogniz- 
ing the time lost and the costs incurred in transporting a commodity 
from one location to another, the convenience yield may be thought of 
as the value of being able to profit from temporary local shortages of 
the commodity through ownership of the physical commodity. The 
profit may arise either from local price variations or from the ability to 
maintain a production process as a result of ownership of an inventory 
of raw material.4 

The convenience yield will depend on the identity of the individual 
holding the inventory and in equilibrium inventories will be held by 
individuals for whom the marginal convenience yield net of any physi- 
cal storage costs is highest. We assume that a positive amount of the 
commodity is always held in inventory, and note that competition 
among potential storers will ensure that the net convenience yield of 
the marginal unit of inventory will be the same across all individuals 
who hold positive inventories. This marginal (net) convenience yield 
can be expected to be inversely proportional to the amount of the 
commodity held in inventory. Moreover, when stocks of the physical 
commodity are high, not only will the marginal convenience yield tend 
to be low, but so also will be the spot price S ,  and conversely when 

4. Cootner (1967, p. 65) defines the convenience yield of inventory as "the present 
value of an increased income stream expected as a result of conveniently large inven- 
tories." This contrasts with our definition of the convenience yield as a flow. 
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stocks of the physical commodity are low. We make the simplifying 
assumption that the marginal net convenience yield of the commodity 
can be written as a function of the current spot price and time, C(S, t). 
Detailed modeling of the behavior of the convenience yield is beyond 
the scope of this paper, and in the interest of tractability we shall 
sometimes assume simply that the convenience yield is proportional to 
the current spot price. 

Our assumption that the convenience yield is a function only of the 
current spot price, together with the further assumption which we 
maintain throughout the paper, that the interest rate is a constant, p, 
suffices to yield a determinate relation between the spot and futures 
prices of the commodity. Thus let F(S, T ) represent the futures price at 
time t for delivery of one unit of the commodity at time T where T = T 
- t. The instantaneous change in the futures prices is given from Ito's 
lemma by 

Then consider the instantaneous rate of return earned by an individual 
who purchases one unit of the commodity and goes short (Fs)- ' futures 
contracts. Since entering the futures contract involves no receipt or 
outlay of funds, his instantaneous return per dollar of investment in- 
cluding the marginal net convenience yield, using (2), is 

-d s  + '(')dl - (SF,) - 1d~ 

S S 


= ( S F s ) - ' [ ~ s C ( ~ )- %FSS u2s2  + FT] dt. 
(3) 

Since this return to nonstochastic and since C(S) is defined as the 
(net) convenience yield of the marginal unit of inventory, it follows that 
the return must be equal to the riskless return p dt.-Setting the right 
hand side of (3) equal to p dt, we obtain the partial differential equation 

%FSS u2s2 + Fs(pS - C) - F, = 0. (4) 

Thus the futures price is given by the solution to (4) subject to the 
boundary condition 

This establishes that the futures price is a function of the current spot 
price and the time to maturity. Moreover, the parameters of the conve- 
nience yield function may be estimated directly from the relation be- 
tween spot and futures prices. If the convenience yield is proportional 
to the spot price, 
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then following Ross (1978) the futures price is given by 

independent of the stochastic process of the spot price. For more gen- 
eral specifications of the convenience yield it is necessary to solve (4) 
and (5) directly. 

Finally, using (4) in expression (2), the instantaneous change in the 
futures price may be expressed in terms of the convenience yield and 
the instantaneous change in the spot price as 

We are now in a position to derive the partial differential equation 
that must be satisfied by the value of the mine and to characterize the 
optimal output policy of the mine. 

The output rate of the mine, q, is assumed to be costlessly variable 
between the upper and lower bounds and q.' The output rate can be 
reduced below q only by closing the mine, a i d  it is costly both to close 
the mine and t ~ % ~ e n  it again. For this reason the value of the mine will 
depend on whether it is currently open or closed. The value of the mine 
will also depend on the current commodity price, S ;  the physical inven- 
tory in the mine, Q; calendar time, t ;  and the mine operating policy, 4. 
We write the value of the mine as 

The indicator variable j takes the value one if the mine is open and zero 
if it is closed. The operating policy is described by the function deter- 
mining the output rate when the mine is open q(S, Q, t), and three 
critical commodity output prices: S,(Q, t) is the outpyt price at which 
the mine is closed down or abandoned if it was p r e ~ i o ~ s l y  open; S2(Q, 
t) is the price at which the mine is opened up if it was previously 
closed; So (Q, t) is the price at which the mine is abandoned if it is 
already closed. The distinction between closure and abandonment is 
that a closed mine incurs fixed maintenance costs but may be opened 
up again. An abandoned mine incurs no costs but is assumed to be 
permanently abandoned. It is assumed that abandonment involves no 
costs. 

Applying Ito's lemma to (9), the instantaneous change in the value of 
the mine is given by 

5. These bounds may depend on the amount of inventory remaining in the mine and 
time. 
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where the instantaneous change in the mine inventory is determined by 
the output rate 

dQ = -q dt. (1 1) 

The after-tax cash flow, or continuous dividend rate, from the mine 
is 

where 

A(q, Q, t) is the average cash cost rate of producing at the rate q 
at time t when the mine inventory is Q; 

M(t) is the after-tax fixed-cost rate of maintaining the mine at 
time t when it is closed; 

Aj(j = 0, 1) is proportional rate of tax on the value of the mine when 
it is closed and open; and 

T(q,Q,S,t) is the total income tax and royalties levied on the mine 
when it is operating. While alternative forms are possi- 
ble we shall assume that the tax function is 

where 

t l  is the royalty rate and t2 is the income tax rate.6 

The parameters A. and A1 are interpreted most simply as property tax 
rates. However an alternative interpretation may be apposite in some 
contexts: they may represent the intensities of Poisson processes gov- 
erning the event of uncompensated expropriation of the owners of the 
mine. Then the expected loss rate from expropriation is AjH and ex- 
pression (12) represents the cash flow net of the expkcted cost of ex- 
propriation. Under this interpretation the arbitrage strategy outlined 
below is not entirely risk free; however, we shall assume that there is 
no risk premium associated with the possibility of expropriation. 

To derive the differential equation governing the value of the mine 
under the output policy I$ consider the return to a portfolio consisting 
of a long position in the mine and a short position in (HslFs) futures 
contracts. The return on the mine is given by (10)-(12) and the change 
in the futures price is given by (8). Combining these and using (I), the 
return on this portfolio is 

6. For simplicity we have ignored depreciation tax allowances. 
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Ignoring the possibility of expropriation, this return is nonstochastic, 
and to avoid riskless arbitrage opportunities it must be equal to the 
riskless return on the value of the investment. Setting expression (14) 
equal to the riskless return pH, the value of the mine must satisfy the 
partial differential equation 

The mine value satisfies (15) for any operating policy + = { q, So, S I ,  
S2). Under the value maximizing operating policy 4% {q*, S t ,  ST, 
$1, the values of the mine when open, V(S, Q, t), and when closed, 
W(S, Q, t) are given by 

W(S, Q, t) = max H(S, Q, t; 0, 4). (17)
6 


The value-maximizing output and the value of the mine under the 
value-maximizing policy satisfy the two equations 

max [% u 2 ~ 2 ~ S S  - C)VS - qVQ+ (pS 
4E(q_,T) (18)+ V, + q(S - A) - T - (p + h1)V1 = 0, 

! ~ u ~ s ~ w ~ ~- C) Ws + W, - M - (p + Ao)W = 0 (19)+ (pS 

(see Merton 1971, theorem 1; Fleming and Rishel 1975, chap. 6; Cox, 
Ingersoll, and Ross 1978, lemma 1). 

Since the policies regarding opening, closing, and abandoning the 
mine are known to investors, we have <. 

where K1(.) and K2(.) are the cost of closing and opening the mine 
respectively. Assuming that the value of an exhausted mine is zero we 
also have the boundary condition 

Finally, since SO*, ST, Sf are chosen to maximize the value of the 
mine it follows from the Merton-Samuelson high-contact condition 
(Samuelson 1965; Merton 1973) that 
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The value of the mine depends on calendar time only because the 
costs A ,  M, K,,  and K2 and the convenience yield C depend on time. If 
there is a constant rate of inflation .ir in all of these and if C(S, t) may be 
written as KS, then equations (18)-(26) may be simplified as follows: 

Define the deflated variables 

Then it may be verified that the deflated value of the mine satisfies 

max [Y2 u2s2vSs + (r - K)SV,- ~ V Q  
4E(q>a  

+ q(s - a) - T - (r + A1)v1 = 0, 
(27) 

where r = p - .ir is the real interest rate, 

T = tlqs + max {t2q[s(l - tl) - a], 0); (29) 

Equations (27)-(36) constitute the general model for the value of a 
mine. They suffice to determine not only the (deflated) value of the 
mine when open and closed, but also the optimal policies for opening, 
closing, and abandoning the mine and for setting the output rates. In 
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general there exists no analytic solution to the valuation model, though 
it is straightforward to solve it numerically. In the next section we 
present a simplified version of the model. 

11. The Infinite Resource Case 

To obtain a model that is analytically tractable we assume that the 
physical inventory of the commodity in the mine, Q, is infinite. This 
infinite resource assumption enables us to replace the partial differen- 
tial equations (27) and (28) for the value of the mine with ordinary 
differential equations, since the mine inventory, Q, is no longer a rele- 
vant state variable. To facilitate the analysis further we assume that the 
tax system allows for full loss offset so that (29) becomes 

~ ( q ,  = - - (29')S )  t l q s  + t 2 4 [ ~ ( 1  t , )  a ] .  

Finally, we assume that the mine has only two possible operating 
rates, q* when it is open, and zero when it is closed; furthermore, 
because it is costly to open or close the mine, costs must be incurred in 
moving from one output rate to the other.' 

Under the foregoing assumptions the (deflated) value of the mine 
when it is open and operating at the rate q" satisfies the ordinary 
differential equation 

1/2 u2s2v,, + (r - K ) S V ,  + rns - n - (r  + X)v = 0 ,  (37) 

where rn = q"(1 - t l ) ( l  - t2) ,and n = q"a(1 - t2) .  
If we assume that f,the periodic maintenance cost for a closed mine, 

is equal to zero, then the value of the mine when closed satisfies the 
corresponding differential equation 

The boundary conditions are obtained by ignoring Q in (31),  (32) ,  
( 3 9 ,  and (36) and by setting w(0)  = 

The complete solutions to equations (37) and (38)are 

v(s)  = p3sy1+ p4sy2 + -rns 
--n 

(40)
k + K  ! ' + A '  

7. The App. develops the model under the neoclassical assumption of a continuously 
variable output rate with convex costs. 

8. In the absence of maintenance costs it is never optimal to abandon a closed mine so 
long as there is a possibility that it will be optimal to reopen it. Hence ~ ' ( 0 )  = 0 and w(s) 
> Ofor s > 0. 
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where the p's are constants to be determined by the boundary condi- 
tions and 

If we assume that (r  + A) > o , ~then P2 = 0 since y2 is negative and 
w(s )must remain finite as s approaches zero. Similarly, since yl  > I ,  P3 
= 0 if we impose the requirement that vls remain finite as s -+w. Thus 
the value of the mine when closed is given by w(s)  = PlsY1,and the 
value when open is 

If the possibility of closing the mine when output prices are low is 
ignored, the value of the mine is given by the last two terms in (41); 
thus the first term represents the value of the closure option. 

The remaining constants and P4, as well as the optimal policy for 
closing and opening the mine represented by the output prices S T  and 
s2 ,  are determined by conditions (31),  (32),  ( 3 9 ,  and (36),which imply 
that 

% 

where e = k l  - nl(r + A), b = - k2 - n/(r + A), d = ml(A + K ) ,and x, 
the ratio of the commodity prices at which the mine is crosed and 
opened, is the solution to the nonlinear equation 

The solution is illustrated in figure 1. In this figure the dotted line 
represents the present value of the cash flows from the mine assuming 
that it can never be shut down; this is obtained by setting p4 = 0 in 
equation (42). Since y2 < 0, the value of the closure option diminishes 
and approaches zero for high output prices. For very low output prices 
the mine is worth more when it is closed than when it is open and 
making losses because of the cost of closure. However, for higher 
output prices the mine is worth more when open, and at the commodity 

9. This is necessary for the present value of the future costs to be finite. 
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s*1 s*2 
FIG.1.-Mine value when open (v) and closed (w)as a function of the 

commodity price (s); k l :  cost of closing mine; k ~ :cost of opening mine. 

price s? it is worth just enough more to warrant the outlay k2  to open it. 
It is clear from the figure and can be demonstrated analytically that as 
the costs of opening and closing the mine approach zero, ST and sz 
approach the same value and the mine value schedule b6comes a single 
curve. On the other hand, as the cost of mine closure becomes very 
large the closure option becomes worthless, and in the limit the value 
schedule for the open mine approaches the dotted line. Changes in the 
cost of mine closure, brought about for example by government regula- 
tion, will alter the optimal policy for closing the mine, S T :  however, 
they will also affect the original decision to invest in the mine by 
changing the present value of the future cash flows. Such effects, or 
those induced by changes in the tax regime, are readily analyzed in the 
context of this simplified model or the general model of the previous 
section. 

111. An Example 

To illustrate the nature of our solution we consider a mine example 
based on the stylized facts for copper. In this example there is a finite 
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TABLE 1 Data for a Hypothetical Copper Mine 

Mine: 
Output rate (q*): 10 million poundslyear 
Inventory (Q): 150 million pounds 
Initial average cost of production a(q*, Q): $0.50/pound 
Initial cost of opening and closing (k,, k2): $200,000 
Initial maintenance costs (f): $500,00O/year 
Cost inflation rate (a):8%/year 

Copper: 
Convenience yield (K): l%/year 
Price variance (cr2): 8%lyear 

Taxes: 
Real estate (A,, A2): 2%lyear 
Income (t2): 50% 
Royalty ( t , ) :0% 
Interest rate (p): lO%/year 

mine inventory so that the stochastic optimal control problem repre- 
sented by equations (27)-(36) must be solved numerically. To simplify 
matters somewhat we assume that there is a single feasible operating 
rate when the mine is open. The mine may be closed down or opened at 
a cost of $200,000 in current prices; it may also be abandoned. Other 
data required for this example are contained in table 1 .I0 

Given an inventory equal to 15 years production, we find that the 
cost of production is 50 cents per pound, but it is not optimal to incur 
the cost of opening the mine until the price of copper rises to 76 cents. 
On the other hand, if the mine is already open and operating, it is not 
optimal to close it down until the copper price drops to 44 cents. 
Finally, the mine should be abandoned if the price drops below 20 
cents. Obviously these critical prices depend on the assumed costs of 
opening, closing, and maintaining the mine: they also depend upon the 
remaining inventory in the mine. The greater the invenlory in the mine 
the greater is the incentive to extract the copper immediately, since the 
opportunity cost of immediate extraction falls as the expected life of 
the mine increases. Thus the greater the inventory the lower is the 
price at which the mine is opened and closed and, since the mine value 
is a nondecreasing function of the inventory, the lower the price at 
which it is abandoned. 

Table 2 summarizes the results when the mine has a 15-year inven- 
tory. Columns 1 and 3 give the present values of the future cash flows 
from the mine, assuming that it is open and closed, respectively, for 
different copper prices. These are the relevant values for the invest- 
ment decision. Column 4 gives the value of the mine assuming that it 

10. The variance rate and convenience yield used in table 1 compare with a variance 
rate for COMEX monthly settlement prices for copper of 7.8% per year for 1971-82 and 
an average convenience yield of 0.7% per year computed from annual data on the May 
contract for the same period, using eq. (7). 
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TABLE 2 Value of Copper Mine for Different Copper Prices 

Mine Value Value of Value of 
Copper ($ million) Fixed-Output- Closure Value of Mine 
Price Rate Mine Option under Certainty, 

($/pound) Open Closed ($ million) ($ million) Risk a2 = 0 ($ million) 
(1) (2) (3) (4) (5) (6) (7) 

* Optimal to close mine 
i. Optimal to open mine 

cannot be closed down but must be operated at the rate of 10 million 
pounds per year until the inventory is exhausted in 15 years. The 
difference between column 4 and the greater of the values shown in 
columns 2 and 3 represents the value of the option to close down or 
abandon the mine if the price of copper falls far enough. The value of 
this closure option is shown in column 5: it amounts to 12% of the value 
of the fixed-output-rate mine when the copper price is equal to the 
variable cost of 50 cents per pound; of course this would represent a 
much higher proportion of the net present value of an investment in the 
mine. 

Column 6 of the table reports the instantaneous risk of the mine at 
different copper prices. This is the instantaneous standard deviation of 
the mine value, defined as (v,lv)us when the mine is open and (w,lw)us 
when the mine is closed. As we would expect, the risk of the mine 
decreases as the copper price and hence the operating margin in- 
creases. Since the copper price is stochastic, so also is the ri+ of the 
mine and the instantaneous rate of return required by investors, point- 
ing to the dangers of assuming a single discount rate in a present value 
analysis. 

Ownership of a mine that is not currently operating involves three 
distinct types of decision possibilities or options: first, the decision to 
begin operations; second, the decision to close the mine when it is 
currently operating (and possibly to reopen it later), which we have 
referred to as the closure option; and third, the decision to abandon the 
mine early, before the inventory is exhausted. 

The decision to begin operations depends in our model on the cur- 
rent spot price of the commodity and the mine inventory. When there 
is no uncertainty, so that the time path of the commodity price is 
deterministic, the optimal decision rule for beginning operations can be 
expressed in calendar time (and the mine inventory). This certainty 
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case, which has been analyzed extensively under the rubric of the 
"timing option" (see, e.g., Solow 1974), corresponds to column 7, of 
table 2: this gives the value of the closed mine under the assumption of 
certainty, which may be contrasted with the uncertainty case of col- 
umn 3. For our parameter values it is never optimal under certainty to 
close or abandon the mine, once it is open, before the inventory is 
exhausted," so that the closure and early abandonment options are 
worthless. When the commodity price is in the neighborhood of the 
production costs the elimination of uncertainty reduces the value of the 
mine dramatically. Of course this depends on the particular values of 
the convenience yield and other parameters. 

IV. The Investment Decision 

Thus far, only the valuation of the cash flows from an investment 
project has been considered. The investment decision itself requires 
that a comparison be made between the present value of the project 
cash flows and the initial investment needed for the project. Continuing 
with the example of a mine, V(S, Q*, t) represents the (nominal) value 
at time t of a completed operating mine with inventory Q* when the 
current output price is S;  V(.)is equal to the present value of the cash 
flows that will be realized from the mine under the optimal operating 
policy. Similarly, let I(S, Q*, t) represent the investment required to 
construct an operating mine with inventory Q* on a particular prop- 
erty: the amount of this initial investment may obviously depend on 
calendar time and upon the size of the mine as represented by Q*, and 
S is included as an argument for the sake of generality. Then, assuming 
that construction lags can be neglected, the net present value (NPV) at 
time t of constructing the mine immediately is given by 

NPV(S, Q*, t )  = V(S, Q*, t) - I ( s ,  Q*: t). (43) 

However, once the possibility of postponing an investment decision 
is recognized, it is clear that it is not in general optimal to proceed with 
construction simply because the net present value of construction is 
positive: there is a "timing option" and it may pay to wait in the 
expectation that the net present value of construction will increase. 
This dynamic aspect of the investment decision is closely related to the 
problem of determining the optimal strategy for exercising an option on 
a share of common stock: the right to make the investment decision 
and to appropriate the resulting net present value is the ownership right 
in the undeveloped mine property, and the value of this ownership 
right corresponds to the value of the stock option. 

Define X(S, Q*, t )  as the value of the ownership right to an unde- 

11. Because the commodity price is increasing faster than the production costs. 
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veloped mine with inventory Q* at time t when the current output price 
is S .  The stochastic process for X( . )  is obtained from Ito's lemma, 
using the assumption about the stochastic process for S embodied in 
expression ( 1 ) .  Then the arbitrage argument used to derive the differen- 
tial equation (15)for the value of a completed mine may be repeated to 
show that X( . )  must satisfy the partial differential equation 

where, as before, A represents either the rate of tax on the value of the 
property or the intensity of a Poisson process governing the event of 
expropriation.l2  

Since the origin is an absorbing state for the commodity price, S ,  we 
have the boundary condition 

X(0,  Q*, t )  = 0 ,  (45) 

and if the ownership rights are in the form of a lease which expires at 
time T, then 

X ( S ,  Q*, T )  = 0 .  (46) 

Assuming that the size of the mine inventory, Q*, is predetermined 
by technical and geological factors, the optimal strategy for investment 
can be characterized in terms of a time dependent schedule of output 
prices S'(t) such that 

x(s', Q*, t )  = v(s',Q*, t )  - I(s', Q*, t ) ,  (47) 

Xs(S', Q*, t )  = vs (s ' ,  Q*, t )  - Is(s', Q*, t ) .  (48) 

Equation (47)states simply that the value of the property is equal to 
the net present value of the investment at the time it is made. Equation 
(48) is the Merton-Samuelson high-contact or envelopccondition for a 
maximizing choice of s'. 

If the amount of the accessible inventory in the mine, Q*,>depends 
on the amount of the initial investment instead of being determined 
exogenously, then we have the additional value-maximizing condition 
to determine the size of the initial mine inventory, Q*: 

vQ(S1,Q*, t )  = lQ(S1,Q*, t ) .  (49) 

Thus the optimal investment strategy is obtained by solving the par- 
tial differential equation (44)for the value of the ownership right, sub- 
ject to boundary conditions (45)-(49). The optimal time to invest is 
determined by the series of critical output prices ~ ' ( t )described by (47) 
and (48);the optimal amount to invest is determined by the first order 
condition (49). Note that the boundary conditions for this problem 

12. An alternative assumption is that all costs inflate at the common rate T ;this would 
convert (44) into an ordinary differential eq. for the deflated mine value x = Xe-"'. 
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involve V ( S , Q, t), the present value of the cash flows from a com- 
pleted mine. Thus solving the cash flow valuation problem is a prereq- 
uisite for the investment decision analysis described in this section. 

V. Long-Term Supply Contracts 

It is not uncommon for the outputs of natural resource investments to 
be sold under long-term contracts that fix the price of the commodity 
but leave the purchase rate at least partially to the discretion of the 
purchaser. Where they exist, such contracts must be taken into ac- 
count in valuing ongoing projects. Therefore in this section we show 
briefly how these contracts may be valued and the equilibrium contract 
price determined. 

Let Y(S , t ;  p ,  T) denote the value at time t of a particular contract 
to purchase the commodity up to time Tat the contract price p ,  when 
the current spot price of the commodity is S .  The contract is assumed 
to permit the purchaser to vary the price rate, q , between the lower and 
upper bounds q and (7. Since the commodity is by assumption available 
for purchase 2 the prevailing spot price S ,  ownership of the contract 
yields an instantaneous benefit or cash flow q(S - p). 

Using Ito's lemma and the stochastic process for S, the instanta- 
neous change in the value of the contract is given by 

Then an arbitrage argument analogous to that presented in Section I 
implies that the value of the coritract must satisfy the partial differential 
equation: 

The value of the contract at maturity, t = T, is equal to zero, so that 

In addition, the origin is an absorbing state for the spot price S .  This 
implies that if S = 0, the holder of the contract must incur certain 
losses at the rate -q p  up to the maturity of the contract, so that 

Finally, for sufficiently high values of S , the value of the right to vary 
the purchase rate approaches zero and the value of the contract ap- 
proaches that of a series of forward contracts to purchase at the rate (7 
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at the fixed price p .  Noting that forward and futures prices are equiva- 
lent when the interest rate is nonstochastic (see Cox et al. 1981; Jarrow 
and Oldfield 1981; Richard and Sundaresan 1981), this implies that 

where F(S, T) is the futures price for delivery in T periods as defined 
previously. 

The equilibrium contract price (or price schedule) is that which 
makes the value of the contract at inception equal to zero, given the 
prevailing spot price, S, and maturity, T. Writing the equilibrium con- 
tract price as p*(S, T), we have 

In general there does not exist a closed-form solution for Y(.) or 
p*(.). However, if the convenience yield can be written as C(s) = KS, 
then closed-form solutions may be obtained in two special cases. 

First, if the purchaser has no discretion over the purchase rate, so 
that (7 = q = q*, then the contract is equivalent to a series of forward 
contractswith value given by13 

This implies that the equilibrium contract price is 

Second, if the contract has an infinite maturity, thd-value of the 
contract is equal to the sum of the values of two assets we have already 
valued: a perpetual contract to purchase the commodity at the fixed 
rate q and a mine with infinite inventory, an average cost of production 
p ,  f&sible production rates (7 - q, and with no taxes, maintenance 
costs, or costs of opening and closing. The former may be valued using 
equation (56) and the latter is a special case of Section 11. '~ It can then 
be shown that 

13. We thank the referee for this point. 
14. As the referee remarks, this contract is equivalent to a perpetuity of European 

options on the commodity. 
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where 

(P - K)] qdp1-y2,
P 

d - -4 - 4 - 4 9  

and y l ,  y2, and a2are as defined following equation (40). The equilib- 
rium price p*(S, 7) is found from the nonlinear equation obtained by 
setting either of the expressions (58) equal to zero. 

VI. Conclusion 

We have shown in the paper how assets whose cash flows depend on 
highly variable output prices may be valued and how the optimal 
policies for managing them may be determined by exploiting the prop- 
erties of replicating self-financing portfolios. The explicit analysis rests 
on the assumption that such portfolios may be formed by trading in 
futures contracts in the output commodity, but the general approach 
can also be developed in a general equilibrium context if the relevant 
futures markets do not exist. 

In addition to providing a rich set of empirical predictions for empir- 
ical research, this framework should be useful for the analysis of capi- 
tal-budgeting decisions in a wide variety of situations in which the 
distribution of future cash flows is not given exogenously but must be 
determined by future management decisions. 

Appendix 

In contrast to the assumption of Section I1 that there are only two feasible 
output rates, zero and q*, and that it is costly to shift from one to the other, we 
assume in this case that the output rate is continuously and costlessly variable 
between zero and ?j;in keeping with this assumption, costs of opening and 
closing the mine are neglected and this renders the distinction between an open 
and a closed mine otiose. 

We assume that no costs are incurred if the output rate is zero and that for 
positive output rates the total cost per unit time of the output rate q is c(q) = 

q . a(q) = a. + a l q  + a2q2, where a, ,  a2 > 0; this represents a (linearly) 
increasing marginal cost schedule. 

Using these assumptions in equation (27) , the optimal output policy and the 
value of the mine satisfy 

?hu2s2vs, + (r - K)VS + (1 - t2) max [(I - tl)qs 
4E(O%Tl 
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Carrying out the maximization we find that the optimal output policy is 

[ s > S  
"1 - - a ,

s* ( s )  = () S > s > s *  
s =s s*, 

where s* = ( a l  + 2 G ) l ( l  - t l ) and s = ( a l  + 2a24)l(1 - t l ) .Thus the 
optimal output policy maximizes the instantaneous profit rate; since the profit 
rate is zero when the output rate is zero, the output rate is positive whenever 
the net-of-royalty output price exceeds the minimum average cost of produc- 
tion. 

The after-tax cash flow from the mine under the optimal output policy, p(s ) ,  
is given by 

S > s > s*, 

When p(s )  is substituted for the maximand in equation ( A l ) , the complete 
solutions for the three regions are 

s 5 s * ,  (A21 

S > s > s*, (A31 

where 

Variables yl and y2 are as defined following equation (40), and the 
coefficients pi ( i  = 1 ,  . . . , 6 )  are constants determined as follows. As in the 
case of Section I1 the requirements that v and vls remain finite for very small 
and very large s ,  respectively, imply that P2 = P5 = 0. The remaining four 
constants are obtained by solving the four linear equations yielded by imposing 
the condition that the valuation schedule v ( s ) be continuous and have a finite 
second derivative at s* and 3: 
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FIG.2.-Case ii: Mine value ( v )and optimal output as a function of the output 
price ( s ) .  

Thus the value of the mine is given by the solution to equations (A2) - (A8)  
with P2 = Ps = 0. Since the equation system (A5)-(A8)  is linear it is a 
straightforward if tedious task to  obtain an explicit valuation expression which 
may be used for comparative statics. The valuation schedule and the optimal 
output policy are illustrated in figure 2. In this figure the dotted line corre- 
sponds to the value of the mine if it is required to operate perpetually at its 
maximum rate $: thus the difference between the v(s)  schedule and this line 
represents the value of the option to vary the output rate in response to  chang- 
ing output prices. 
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